List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2133318/publications.pdf Version: 2024-02-01

ANCELA M KAINDI

#	Article	IF	CITATIONS
1	Homozygous mutation in <i>MCM7</i> causes autosomal recessive primary microcephaly and intellectual disability. Journal of Medical Genetics, 2022, 59, 453-461.	3.2	5
2	In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain, 2022, 145, 119-141.	7.6	28
3	Cerebral Abnormalities in Spina Bifida: A Neuropathological Study. Pediatric and Developmental Pathology, 2022, 25, 107-123.	1.0	3
4	Gene replacement therapy with onasemnogene abeparvovec in children with spinal muscular atrophy aged 24 months or younger and bodyweight up to 15 kg: an observational cohort study. The Lancet Child and Adolescent Health, 2022, 6, 17-27.	5.6	57
5	β-Ureidopropionase deficiency due to novel and rare UPB1 mutations affecting pre-mRNA splicing and protein structural integrity and catalytic activity. Molecular Genetics and Metabolism, 2022, 136, 177-185.	1.1	3
6	Is cannabidiol worth a trial in Rasmussen encephalitis?. European Journal of Paediatric Neurology, 2022, 37, 53-55.	1.6	3
7	Cross-sectional Neuromuscular Phenotyping Study of Patients With Arhinia With <i>SMCHD1</i> Variants. Neurology, 2022, 98, .	1.1	3
8	Standard values for MRI brain biometry throughout the first year of life. Pediatrics and Neonatology, 2022, 63, 255-261.	0.9	1
9	Relationship between cerebral palsy severity and cognition, aids and education. Minerva Pediatrics, 2022, , .	0.4	0
10	Epilepsy surgery in the first six months of life: A systematic review and meta-analysis. Seizure: the Journal of the British Epilepsy Association, 2022, 96, 109-117.	2.0	12
11	Modified Zipper Method, a Promising Treatment Option in Severe Pediatric Immune-Mediated Neurologic Disorders. Journal of Child Neurology, 2022, 37, 505-516.	1.4	3
12	Selenium Status in Paediatric Patients with Neurodevelopmental Diseases. Nutrients, 2022, 14, 2375.	4.1	2
13	Interferon receptor dysfunction in a child with malignant atrophic papulosis and CNS involvement. Lancet Neurology, The, 2022, 21, 682-686.	10.2	2
14	Abnormal brain structure and behavior in MyD88-deficient mice. Brain, Behavior, and Immunity, 2021, 91, 181-193.	4.1	14
15	Brain malformations and cognitive performance in spina bifida. Developmental Medicine and Child Neurology, 2021, 63, 295-302.	2.1	9
16	SIGLEC1 (CD169) as a potential diagnostical screening marker for monogenic interferonopathies. Pediatric Allergy and Immunology, 2021, 32, 621-625.	2.6	15
17	Systematic Classification of Spina Bifida. Journal of Neuropathology and Experimental Neurology, 2021, 80, 294-305.	1.7	6
18	Lumbar Puncture Opening Pressure in Patients with Spinal Muscular Atrophy. Neuropediatrics, 2021, 52, 219-223.	0.6	4

#	Article	IF	CITATIONS
19	Novel Mutation in the TSFM Gene Causes an Earlyâ€Onset Complex Chorea without Basal Ganglia Lesions. Movement Disorders Clinical Practice, 2021, 8, 453-455.	1.5	1
20	Zebrafish modeling mimics developmental phenotype of patients with <scp><i>RAPGEF1</i></scp> mutation. Clinical Genetics, 2021, 100, 144-155.	2.0	1
21	Arhgef2 regulates neural differentiation in the cerebral cortex through mRNA m6A-methylation of Npdc1 and Cend1. IScience, 2021, 24, 102645.	4.1	4
22	Assessment of myelination in infants and young children by T1 relaxation time measurements using the magnetization-prepared 2 rapid acquisition gradient echoes sequence. Pediatric Radiology, 2021, 51, 2058-2068.	2.0	9
23	Infratentorial MRI Findings in Rasmussen Encephalitis Suggest Primary Cerebellar Involvement. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	4
24	Maintenance of Elective Patient Care at Berlin University Children's Hospital During the COVID-19 Pandemic. Frontiers in Pediatrics, 2021, 9, 694963.	1.9	1
25	Motor and functional outcome of selective dorsal rhizotomy in children with spastic diplegia at 12 and 24Âmonths of follow-up. Acta Neurochirurgica, 2021, 163, 2837-2844.	1.7	5
26	Lessons learned from drug trials in neurofibromatosis: A systematic review. European Journal of Medical Genetics, 2021, 64, 104281.	1.3	5
27	OUP accepted manuscript. Human Molecular Genetics, 2021, 30, 2068-2081.	2.9	7
28	Advantages of Botulinum Toxin A Treatment in Combination with Controlled Dynamic Stretching Orthotics for the Treatment of Contractures. , 2021, 52, .		0
29	First Report of Clioblastoma and Associated PNKP Mutation. Neuropediatrics, 2021, 52, .	0.6	Ο
30	Expanding the Phenotype of NUP85 Mutations beyond Nephrotic Syndrome to Primary Autosomal Recessive Microcephaly and Seckel Syndrome Spectrum Disorders. , 2021, 52, .		1
31	Case Report: Behavioral Disorder Following Hemispherotomy: A Valproate Effect?. Frontiers in Neurology, 2021, 12, 764376.	2.4	1
32	Beware of Neurotoxins in Common Plants: Water Hemlock Poisoning Presenting as Convulsive Status Epilepticus. Pediatric Neurology, 2021, 127, 39-40.	2.1	0
33	Modified Zipper Method: A Promising Treatment Option in Severe Pediatric Cases of Immune-Mediated Neurological Disorders. Neuropediatrics, 2021, 52, .	0.6	Ο
34	Pilot Study to Observe Changes in Independence in Everyday Life through Intensive Wheelchair Mobility Training in Wheelchair-Dependent Children. Neuropediatrics, 2021, 52, .	0.6	0
35	Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Frontiers in Cell and Developmental Biology, 2021, 9, 784700.	3.7	28
36	Case Report: Hemispherotomy in the First Days of Life to Treat Drug-Resistant Lesional Epilepsy. Frontiers in Neurology, 2021, 12, 818972.	2.4	6

#	Article	IF	CITATIONS
37	Encephalitis patient-derived monoclonal GABAA receptor antibodies cause epileptic seizures. Journal of Experimental Medicine, 2021, 218, .	8.5	19
38	Congenital microcephalyâ€linked CDK5RAP2 affects eye development. Annals of Human Genetics, 2020, 84, 87-91.	0.8	4
39	Just Expect It: Compound Heterozygous Variants of POMT1 in a Consanguineous Family—The Role of Next Generation Sequencing in Neuromuscular Disorders. Neuropediatrics, 2020, 51, 072-075.	0.6	1
40	Age-specific occurrence of pathological fractures in patients with spina bifida. European Journal of Pediatrics, 2020, 179, 773-779.	2.7	4
41	MN1 C-terminal truncation syndrome is a novel neurodevelopmental and craniofacial disorder with partial rhombencephalosynapsis. Brain, 2020, 143, 55-68.	7.6	38
42	Early Onset, Long Illness Duration, Epilepsy Type, and Polypharmacy Have an Adverse Effect on Psychosocial Outcome in Children with Epilepsy. Neuropediatrics, 2020, 51, 164-169.	0.6	6
43	Presence of anti-neuronal antibodies in children with neurological disorders beyond encephalitis. European Journal of Paediatric Neurology, 2020, 28, 159-166.	1.6	4
44	Immunofluorescence Staining of Paraffin Sections Step by Step. Frontiers in Neuroanatomy, 2020, 14, 582218.	1.7	77
45	Clinical Outcome of Children With Corpus Callosum Agenesis. Pediatric Neurology, 2020, 112, 47-52.	2.1	7
46	The clinical-phenotype continuum in DYNC1H1-related disorders—genomic profiling and proposal for a novel classification. Journal of Human Genetics, 2020, 65, 1003-1017.	2.3	30
47	Intravenous Nimodipine Treatment for Severe Episode of ATP1A2 Hemiplegic Migraine. Pediatric Neurology, 2020, 112, 71-72.	2.1	6
48	The clinical, histologic, and genotypic spectrum of <i>SEPN1</i> -related myopathy. Neurology, 2020, 95, e1512-e1527.	1.1	44
49	Insight Into the Ontogeny of GnRH Neurons From Patients Born Without a Nose. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1538-1551.	3.6	7
50	Clinical and Magnetic Resonance Imaging Outcome Predictors in Pediatric <scp>Anti–Nâ€Methylâ€Dâ€Aspartate</scp> Receptor Encephalitis. Annals of Neurology, 2020, 88, 148-159.	5.3	26
51	Fulminant cerebral venous thrombosis associated with the m.3243A>G MELAS mutation: A new guise for an old disease. Brain and Development, 2019, 41, 901-904.	1.1	1
52	A missense mutation in SNRPE linked to non-syndromal microcephaly interferes with U snRNP assembly and pre-mRNA splicing. PLoS Genetics, 2019, 15, e1008460.	3.5	18
53	PEDIA: prioritization of exome data by image analysis. Genetics in Medicine, 2019, 21, 2807-2814.	2.4	58
54	Structural brain anomalies in patients with <scp>FOXG</scp> 1 syndrome and in Foxg1+/â^' mice. Annals of Clinical and Translational Neurology, 2019, 6, 655-668.	3.7	19

#	Article	IF	CITATIONS
55	Altered inhibition and excitation in neocortical circuits in congenital microcephaly. Neurobiology of Disease, 2019, 129, 130-143.	4.4	7
56	Mutations in the tRNA methyltransferase 1 gene <i>TRMT1</i> cause congenital microcephaly, isolated inferior vermian hypoplasia and cystic leukomalacia in addition to intellectual disability. American Journal of Medical Genetics, Part A, 2018, 176, 2517-2521.	1.2	15
57	Subtelomeric methylation distinguishes between subtypes of Immunodeficiency, Centromeric instability and Facial anomalies syndrome. Human Molecular Genetics, 2018, 27, 3568-3581.	2.9	26
58	P 306. Role of Cdk5rap2 in Neocortical Development. , 2018, 49, .		0
59	FV 757. Clinical, Radiological and Genetic Spectrum of a Large Pediatric Cohort with Epilepsy. Neuropediatrics, 2018, 49, .	0.6	Ο
60	SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nature Genetics, 2017, 49, 238-248.	21.4	131
61	CDK5RAP2 Is Required to Maintain the Germ Cell Pool during Embryonic Development. Stem Cell Reports, 2017, 8, 198-204.	4.8	17
62	Pontine Tegmental Cap Dysplasia in an Extremely Preterm Infant and Review of the Literature. Journal of Child Neurology, 2017, 32, 334-340.	1.4	7
63	Autosomal Recessive Primary Microcephaly (MCPH): An Update. Neuropediatrics, 2017, 48, 135-142.	0.6	70
64	Lacosamide Lowers Valproate and Levetiracetam Levels. Neuropediatrics, 2017, 48, 188-189.	0.6	6
65	Identification of a novel homozygous <i>TRAPPC9</i> gene mutation causing nonâ€syndromic intellectual disability, speech disorder, and secondary microcephaly. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 839-845.	1.7	28
66	PTRH2 gene mutation causes progressive congenital skeletal muscle pathology. Human Molecular Genetics, 2017, 26, 1458-1464.	2.9	10
67	Recessive mutation in EXOSC3 associates with mitochondrial dysfunction and pontocerebellar hypoplasia. Mitochondrion, 2017, 37, 46-54.	3.4	26
68	Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation. PLoS Genetics, 2017, 13, e1006746.	3.5	27
69	Golgi-Cox Staining Step by Step. Frontiers in Neuroanatomy, 2016, 10, 38.	1.7	133
70	Genetic causes of MCPH in consanguineous Pakistani families. Clinical Genetics, 2016, 89, 744-745.	2.0	6
71	Acute Disseminated Encephalomyelitis After Human Parechovirus Infection. Pediatric Infectious Disease Journal, 2016, 35, 35-38.	2.0	12
72	Phenotype variability of infantile-onset multisystem neurologic, endocrine, and pancreatic disease IMNEPD. Orphanet Journal of Rare Diseases, 2016, 11, 52.	2.7	13

#	Article	IF	CITATIONS
73	Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. ELife, 2016, 5, .	6.0	88
74	Phenotype of five patients with dopa-responsive dystonia and mutations in GCH1. Journal of Pediatric Neurology, 2015, 03, 083-087.	0.2	1
75	Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis. Blood, 2015, 126, 2842-2851.	1.4	58
76	Loss of CDK5RAP2 affects neural but not non-neural mESC differentiation into cardiomyocytes. Cell Cycle, 2015, 14, 2044-2057.	2.6	15
77	Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nature Communications, 2015, 6, 6761.	12.8	119
78	Redefining the MED13L syndrome. European Journal of Human Genetics, 2015, 23, 1308-1317.	2.8	53
79	What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Molecular and Cellular Probes, 2015, 29, 271-281.	2.1	64
80	Novel Alternative Splice Variants of Mouse Cdk5rap2. PLoS ONE, 2015, 10, e0136684.	2.5	4
81	Mutations in PTRH2 cause novel infantileâ€onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness. Annals of Clinical and Translational Neurology, 2014, 1, 1024-1035.	3.7	29
82	Large homozygous RAB3GAP1 gene microdeletion causes Warburg Micro Syndrome 1. Orphanet Journal of Rare Diseases, 2014, 9, 113.	2.7	5
83	Combined immunodeficiency develops with age in Immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet Journal of Rare Diseases, 2014, 9, 116.	2.7	34
84	Previously reported new type of autosomal recessive primary microcephaly is caused by compound heterozygous <i>ASPM</i> gene mutations. Cell Cycle, 2014, 13, 1650-1651.	2.6	8
85	Diagnostic approach to microcephaly in childhood: a twoâ€center study and review of the literature. Developmental Medicine and Child Neurology, 2014, 56, 732-741.	2.1	176
86	Growth and psychomotor development of patients with Duchenne muscular dystrophy. European Journal of Paediatric Neurology, 2014, 18, 38-44.	1.6	35
87	Interstitial 12p deletion involving more than 40 genes in a patient with postnatal microcephaly, psychomotor delay, optic nerve atrophy, and facial dysmorphism. Meta Gene, 2014, 2, 72-82.	0.6	4
88	Autosomal recessive primary microcephalies (MCPH). European Journal of Paediatric Neurology, 2014, 18, 547-548.	1.6	22
89	Is microcephaly a so-far unrecognized feature of XYY syndrome?. Meta Gene, 2014, 2, 160-163.	0.6	2
90	Clinical and cellular features in patients with primary autosomal recessive microcephaly and a novel CDK5RAP2 mutation. Orphanet Journal of Rare Diseases, 2013, 8, 59.	2.7	27

#	Article	IF	CITATIONS
91	Microcephaly. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 111, 129-141.	1.8	94
92	Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation. Orphanet Journal of Rare Diseases, 2013, 8, 178.	2.7	38
93	Combined deletion 18q22.2 and duplication/triplication 18q22.1 causes microcephaly, mental retardation and leukencephalopathy. Gene, 2013, 523, 92-98.	2.2	4
94	CDK5RAP2 Expression During Murine and Human Brain Development Correlates with Pathology in Primary Autosomal Recessive Microcephaly. Cerebral Cortex, 2013, 23, 2245-2260.	2.9	30
95	G protein–coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammationâ€induced sensitization to excitotoxic neurodegeneration. Annals of Neurology, 2013, 73, 667-678.	5.3	44
96	Angelman syndrome and severe infections in a patient with de novo 15q11.2–q13.1 deletion and maternally inherited 2q21.3 microdeletion. Gene, 2013, 512, 453-455.	2.2	11
97	Reference genes in the developing murine brain and in differentiating embryonic stem cells. Neurological Research, 2012, 34, 664-668.	1.3	14
98	Activation of microglial Nâ€methylâ€Dâ€aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Annals of Neurology, 2012, 72, 536-549.	5.3	194
99	Neuroprotective Strategies. , 2012, , 1173-1179.		Ο
100	Implanted Neurosphere-Derived Precursors Promote Recovery After Neonatal Excitotoxic Brain Injury. Stem Cells and Development, 2011, 20, 865-879.	2.1	28
101	Neuronal Death and Oxidative Stress in the Developing Brain. Antioxidants and Redox Signaling, 2011, 14, 1535-1550.	5.4	207
102	The Yin and Yang of Microglia. Developmental Neuroscience, 2011, 33, 199-209.	2.0	272
103	What's the hype about CDK5RAP2?. Cellular and Molecular Life Sciences, 2011, 68, 1719-1736.	5.4	28
104	Inflammation processes in perinatal brain damage. Journal of Neural Transmission, 2010, 117, 1009-1017.	2.8	51
105	Common molecular causes for congenital heart defects and microcephaly. American Journal of Obstetrics and Gynecology, 2010, 202, e7.	1.3	1
106	Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain, Behavior, and Immunity, 2010, 24, 776-783.	4.1	71
107	Many roads lead to primary autosomal recessive microcephaly. Progress in Neurobiology, 2010, 90, 363-383.	5.7	181
108	The Somatostatin 2A Receptor Is Enriched in Migrating Neurons during Rat and Human Brain Development and Stimulates Migration and Axonal Outgrowth. PLoS ONE, 2009, 4, e5509.	2.5	28

#	Article	IF	CITATIONS
109	Melatonin Promotes Oligodendroglial Maturation of Injured White Matter in Neonatal Rats. PLoS ONE, 2009, 4, e7128.	2.5	94
110	Erythropoietin Attenuates Hyperoxia-Induced Cell Death by Modulation of Inflammatory Mediators and Matrix Metalloproteinases. Developmental Neuroscience, 2009, 31, 394-402.	2.0	35
111	Molecular Mechanisms Involved in Injury to the Preterm Brain. Journal of Child Neurology, 2009, 24, 1112-1118.	1.4	72
112	Autosomal recessive primary microcephalies (MCPH). European Journal of Paediatric Neurology, 2009, 13, 458.	1.6	4
113	Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Annals of Neurology, 2008, 64, 434-445.	5.3	157
114	Erythropoietin protects the developing brain from hyperoxiaâ€induced cell death and proteome changes. Annals of Neurology, 2008, 64, 523-534.	5.3	62
115	Novel <i>RYR1</i> missense mutation causes core rod myopathy. European Journal of Neurology, 2008, 15, e31-2.	3.3	21
116	Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nature Neuroscience, 2008, 11, 476-487.	14.8	483
117	Brief Alteration of NMDA or GABAA Receptor-mediated Neurotransmission Has Long Term Effects on the Developing Cerebral Cortex. Molecular and Cellular Proteomics, 2008, 7, 2293-2310.	3.8	60
118	Spinal Muscular Atrophy With Respiratory Distress Type 1 (SMARD1). Journal of Child Neurology, 2008, 23, 199-204.	1.4	49
119	Dynamics of Somatostatin Type 2A Receptor Cargoes in Living Hippocampal Neurons. Journal of Neuroscience, 2008, 28, 4336-4349.	3.6	32
120	Abnormal Distribution of Calcium-Handling Proteins. Journal of Neuropathology and Experimental Neurology, 2007, 66, 57-65.	1.7	25
121	Rapid and reliable detection of exon rearrangements in various movement disorders genes by multiplex ligationâ€dependent probe amplification. Movement Disorders, 2007, 22, 1708-1714.	3.9	16
122	Subacute proteome changes following traumatic injury of the developing brain: Implications for a dysregulation of neuronal migration and neurite arborization. Proteomics - Clinical Applications, 2007, 1, 640-649.	1.6	13
123	Glutamate antagonists are neurotoxins for the developing brain. Neurotoxicity Research, 2007, 11, 203-218.	2.7	17
124	Comparative Proteomics in Neurodegenerative and Non-neurodegenerative Diseases Suggest Nodal Point Proteins in Regulatory Networking. Journal of Proteome Research, 2006, 5, 1948-1958.	3.7	59
125	Facing the genetic heterogeneity in neuromuscular disorders: Linkage analysis as an economic diagnostic approach towards the molecular diagnosis. Neuromuscular Disorders, 2006, 16, 4-13.	0.6	19
126	Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death and Differentiation, 2006, 13, 1097-1109.	11.2	53

#	Article	IF	CITATIONS
127	Limb girdle muscular dystrophy type 2I caused by a novel missense mutation in the FKRP gene presenting as acute virus-associated myositis in infancy. European Journal of Pediatrics, 2006, 165, 62-63.	2.7	7
128	Acute Ascending Motoric Paraplegia Following Intrathecal Chemotherapy for Treatment of Acute Lymphoblastic Leukemia in Children: Case Reports and Review of the Literature. Klinische Padiatrie, 2006, 218, 350-354.	0.6	13
129	Selenoprotein N Muscular Dystrophy. Journal of Child Neurology, 2006, 21, 316-320.	1.4	14
130	Mice Lacking the Nuclear Pore Complex Protein ALADIN Show Female Infertility but Fail To Develop a Phenotype Resembling Human Triple A Syndrome. Molecular and Cellular Biology, 2006, 26, 1879-1887.	2.3	41
131	Homozygous microdeletion of chromosome 4q11-q12 causes severe limb-girdle muscular dystrophy type 2E with joint hyperlaxity and contractures. Human Mutation, 2005, 26, 279-280.	2.5	12
132	Protection with estradiol in developmental models of apoptotic neurodegeneration. Annals of Neurology, 2005, 58, 266-276.	5.3	71
133	NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15605-15610.	7.1	129
134	Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain. Experimental Neurology, 2005, 193, 497-503.	4.1	130
135	Missense mutations of ACTA1 cause dominant congenital myopathy with cores. Journal of Medical Genetics, 2004, 41, 842-848.	3.2	110
136	High reproducibility of large-gel two-dimensional electrophoresis. Electrophoresis, 2004, 25, 3040-3047.	2.4	56
137	Mutations in the Gene Encoding Gap Junction Protein α12 (Connexin 46.6) Cause Pelizaeus-Merzbacher–Like Disease. American Journal of Human Genetics, 2004, 75, 251-260.	6.2	257
138	Evaluation of Metabolic Effects of Nusinersen in Patients with Spinal Muscular Atrophy. Journal of Pediatric Neurology, 0, , .	0.2	0
139	Real-World Experience Treating Pediatric Epilepsy Patients With Cenobamate. Frontiers in Neurology, 0, 13, .	2.4	14