
Weishou Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2132527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 2010, 326, 511-522.	3.7	462
2	Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant and Soil, 2010, 337, 137-150.	3.7	128
3	Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates. Applied Soil Ecology, 2016, 108, 76-83.	4.3	81
4	Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than archaea in greenhouse-based high N input vegetable soil. Soil Biology and Biochemistry, 2016, 93, 150-159.	8.8	73
5	Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China's Yangtze River Delta. Plant and Soil, 2008, 306, 117-127.	3.7	68
6	An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules, 2021, 11, 530.	4.0	62
7	Effects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soils. Soil Biology and Biochemistry, 2019, 129, 48-59.	8.8	61
8	Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant and Soil, 2010, 334, 123-136.	3.7	46
9	Effects of copper on nitrous oxide (N2O) reduction in denitrifiers and N2O emissions from agricultural soils. Biology and Fertility of Soils, 2020, 56, 39-51.	4.3	34
10	Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell, Tissue and Organ Culture, 2009, 98, 321-330.	2.3	28
11	Microbial deterioration and restoration in greenhouse-based intensive vegetable production systems. Plant and Soil, 2021, 463, 1-18.	3.7	27
12	Nitrous oxide (N2O)-reducing denitrifier-inoculated organic fertilizer mitigates N2O emissions from agricultural soils. Biology and Fertility of Soils, 2017, 53, 885-898.	4.3	26
13	Inoculation with nitrous oxide (N2O)-reducing denitrifier strains simultaneously mitigates N2O emission from pasture soil and promotes growth of pasture plants. Soil Biology and Biochemistry, 2016, 97, 83-91.	8.8	24
14	Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms. Chemosphere, 2022, 303, 134944.	8.2	24
15	Enhancement of the nitrogen-fixing activity of paddy soils owing to iron application. Soil Science and Plant Nutrition, 2021, 67, 243-247.	1.9	20
16	Abundance and community succession of nitrogen-fixing bacteria in ferrihydrite enriched cultures of paddy soils is closely related to Fe(III)-reduction. Science of the Total Environment, 2020, 720, 137633.	8.0	19
17	Coupling between nitrogen-fixing and iron(III)-reducing bacteria as revealed by the metabolically active bacterial community in flooded paddy soils amended with glucose. Science of the Total Environment, 2020, 716, 137056.	8.0	19
18	Nitrogen Fertilization Changes Abundance and Community Composition of Ammonia-Oxidizing Bacteria. Soil Science Society of America Journal, 2011, 75, 2198-2205.	2.2	16

WEISHOU SHEN

#	Article	IF	CITATIONS
19	Long-term application of organic manure changes abundance and composition of ammonia-oxidizing archaea in an acidic red soil. Soil Science and Plant Nutrition, 2015, 61, 620-628.	1.9	14
20	Influence of transgenic ath-miR399d tomato lines on microbial community and diversity in rhizosphere soil. Soil Science and Plant Nutrition, 2015, 61, 259-268.	1.9	8
21	Estimation of interannual trends of ammonia emissions from agriculture in Jiangsu Province from 2000 to 2017. Atmospheric and Oceanic Science Letters, 2020, 13, 268-273.	1.3	7
22	Genome Sequence of Arthrobacter sp. UKPF54-2, a Plant Growth-Promoting Rhizobacterial Strain Isolated from Paddy Soil. Microbiology Resource Announcements, 2019, 8, .	0.6	6
23	Genome Sequences of Two Azospirillum sp. Strains, TSA2S and TSH100, Plant Growth-Promoting Rhizobacteria with N 2 O Mitigation Abilities. Microbiology Resource Announcements, 2019, 8, .	0.6	6
24	Influences of past application rates of nitrogen and a catch crop on soil microbial communities between an intensive rotation. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 97-106.	0.6	5
25	Different strategies for colonization and prevalence after inoculation with plant growth-promoting rhizobacteria revealed by a monitoring method. Soil Science and Plant Nutrition, 2022, 68, 442-453.	1.9	4
26	Investigation of Rice Yields and Critical N Losses from Paddy Soil under Different N Fertilization Rates with Iron Application. International Journal of Environmental Research and Public Health, 2022, 19, 8707.	2.6	4
27	Integrative Analysis of Metabolome and Microbiome in Patients with Progressive Alcohol-Associated Liver Disease. Metabolites, 2021, 11, 766.	2.9	3
28	Genome Sequence of Novoherbaspirillum sp. UKPF54, a Plant Growth-Promoting Rhizobacterial Strain with N 2 O-Mitigating Abilities, Isolated from Paddy Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	1
29	Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique. Atmosphere, 2022, 13, 170.	2.3	1