Jacqueline A Lees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2131919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nature Cell Biology, 2022, 24, 554-564.	10.3	53
2	MITF deficiency accelerates GNAQ-driven uveal melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2107006119.	7.1	12
3	Acquired resistance to PRMT5 inhibition induces concomitant collateral sensitivity to paclitaxel. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
4	E2F4's cytoplasmic role in multiciliogenesis is mediated via an N-terminal domain that binds two components of the centriole replication machinery, Deup1 and SAS6. Molecular Biology of the Cell, 2021, 32, ar1.	2.1	6
5	An EMT–primary cilium–GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. Science Advances, 2021, 7, eabf6063.	10.3	14
6	Emerging Mechanisms by which EMT Programs Control Stemness. Trends in Cancer, 2020, 6, 775-780.	7.4	133
7	Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nature Communications, 2019, 10, 2910.	12.8	77
8	Deoxycytidine Release from Pancreatic Stellate Cells Promotes Gemcitabine Resistance. Cancer Research, 2019, 79, 5723-5733.	0.9	90
9	Uveal melanoma driver mutations in <scp>GNAQ</scp> /11 yield numerous changes in melanocyte biology. Pigment Cell and Melanoma Research, 2018, 31, 604-613.	3.3	22
10	A homozygous deleterious <i>CDK10</i> mutation in a patient with agenesis of corpus callosum, retinopathy, and deafness. American Journal of Medical Genetics, Part A, 2018, 176, 92-98.	1.2	21
11	The <i>Rb</i> tumor suppressor regulates epithelial cell migration and polarity. Molecular Carcinogenesis, 2018, 57, 1640-1650.	2.7	6
12	Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma. Cancer Cell, 2017, 32, 411-426.e11.	16.8	161
13	EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10532-E10539.	7.1	104
14	The awakening of the CDK10/Cyclin M protein kinase. Oncotarget, 2017, 8, 50174-50186.	1.8	24
15	STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle, 2016, 15, 678-688.	2.6	33
16	E2f4 and E2f5 are essential for the development of the male reproductive system. Cell Cycle, 2016, 15, 250-260.	2.6	48
17	BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes and Development, 2016, 30, 18-33.	5.9	53
18	Minor Changes in Expression of the Mismatch Repair Protein MSH2 Exert a Major Impact on Glioblastoma Response to Temozolomide. Cancer Research, 2015, 75, 3127-3138.	0.9	96

JACQUELINE A LEES

#	Article	IF	CITATIONS
19	Comparative Oncogenomic Analysis of Copy Number Alterations in Human and Zebrafish Tumors Enables Cancer Driver Discovery. PLoS Genetics, 2013, 9, e1003734.	3.5	30
20	Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16940-16945.	7.1	34
21	pRB and E2F4 play distinct cell-intrinsic roles in fetal erythropoiesis. Cell Cycle, 2010, 9, 371-376.	2.6	12
22	Disruption of calvarial ossification inE2f4mutant embryos correlates with increased proliferation and progenitor cell populations. Cell Cycle, 2010, 9, 2620-2628.	2.6	8
23	Zebrafish <i>Hagoromo</i> Mutants Up-Regulate <i>fgf8</i> Postembryonically and Develop Neuroblastoma. Molecular Cancer Research, 2009, 7, 841-850.	3.4	39
24	Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish. Developmental Dynamics, 2009, 238, 76-85.	1.8	76
25	E2F4 cooperates with pRB in the development of extra-embryonic tissues. Developmental Biology, 2009, 332, 104-115.	2.0	8
26	E2f6 and Bmi1 cooperate in axial skeletal development. Developmental Dynamics, 2008, 237, 1232-1242.	1.8	25
27	The Retinoblastoma Protein Tumor Suppressor Is Important for Appropriate Osteoblast Differentiation and Bone Development. Molecular Cancer Research, 2008, 6, 1440-1451.	3.4	68
28	Loss of p53 synthesis in zebrafish tumors with ribosomal protein gene mutations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10408-10413.	7.1	124
29	Selective Requirements for E2f3 in the Development and Tumorigenicity of Rb -Deficient Chimeric Tissues. Molecular and Cellular Biology, 2007, 27, 2283-2293.	2.3	33
30	E2f4 is required for normal development of the airway epithelium. Developmental Biology, 2007, 305, 564-576.	2.0	59
31	Cell Cycle Genes Are the Evolutionarily Conserved Targets of the E2F4 Transcription Factor. PLoS ONE, 2007, 2, e1061.	2.5	51
32	Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes and Development, 2004, 18, 1413-1422.	5.9	158
33	Many Ribosomal Protein Genes Are Cancer Genes in Zebrafish. PLoS Biology, 2004, 2, e139.	5.6	368
34	E2F3 Loss Has Opposing Effects on Different pRB-Deficient Tumors, Resulting in Suppression of Pituitary Tumors but Metastasis of Medullary Thyroid Carcinomas. Molecular and Cellular Biology, 2003, 23, 6542-6552.	2.3	90
35	The role of E2F4 in adipogenesis is independent of its cell cycle regulatory activity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2456-2461.	7.1	50
36	Mutant Mouse Models Reveal the Relative Roles of E2F1 and E2F3 In Vivo. Molecular and Cellular Biology, 2002, 22, 2663-2672.	2.3	91

JACQUELINE A LEES

#	Article	IF	CITATIONS
37	E2Fs Regulate Adipocyte Differentiation. Developmental Cell, 2002, 3, 39-49.	7.0	284
38	E2F4 loss suppresses tumorigenesis in Rb mutant mice. Cancer Cell, 2002, 2, 463-472.	16.8	120
39	Sibling rivalry in the E2F family. Nature Reviews Molecular Cell Biology, 2002, 3, 11-20.	37.0	1,072
40	E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in <i>Rb</i> mutant embryos. Genes and Development, 2001, 15, 386-391.	5.9	185
41	E2F4 Is Essential for Normal Erythrocyte Maturation and Neonatal Viability. Molecular Cell, 2000, 6, 281-291.	9.7	174