Shaomin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2131917/publications.pdf Version: 2024-02-01

SHAOMINLL

#	Article	IF	CITATIONS
1	Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity, 2022, 55, 159-173.e9.	14.3	52
2	Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Molecular Psychiatry, 2022, 27, 3182-3191.	7.9	14
3	Aβ oligomers from human brain impair mossy fiber LTP in CA3 of hippocampus, but activating cAMP-PKA and cGMP-PKG prevents this. Neurobiology of Disease, 2022, 172, 105816.	4.4	8
4	Environmental enrichment prevents Al² oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways. Neurobiology of Disease, 2020, 134, 104617.	4.4	36
5	A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. Journal of Neurochemistry, 2020, 154, 583-597.	3.9	158
6	Verubecestat for Prodromal Alzheimer's Disease. New England Journal of Medicine, 2019, 381, 388-389.	27.0	10
7	Iron promotes αâ€synuclein aggregation and transmission by inhibiting <scp>TFEB</scp> â€mediated autophagosomeâ€lysosome fusion. Journal of Neurochemistry, 2018, 145, 34-50.	3.9	40
8	Astrocytic glutamatergic transporters are involved in Aβ-induced synaptic dysfunction. Brain Research, 2018, 1678, 129-137.	2.2	37
9	Decoding the synaptic dysfunction of bioactive human AD brain soluble Aβ to inspire novel therapeutic avenues for Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 121.	5.2	46
10	MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathologica, 2018, 136, 537-555.	7.7	120
11	Soluble Aβ Oligomers Impair Dipolar Heterodendritic Plasticity by Activation of mGluR in the Hippocampal CA1 Region. IScience, 2018, 6, 138-150.	4.1	14
12	Association of <i>IGF1</i> gene polymorphism with Parkinson's disease in a Han Chinese population. Journal of Gene Medicine, 2017, 19, e2949.	2.8	7
13	Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinson's disease. Cell Death and Disease, 2017, 8, e2611-e2611.	6.3	40
14	Human Brain-Derived AÎ ² Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP. Journal of Neuroscience, 2017, 37, 11947-11966.	3.6	108
15	Large Soluble Oligomers of Amyloid β-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate. Journal of Neuroscience, 2017, 37, 152-163.	3.6	262
16	MicroRNA expressing profiles in A53T mutant alpha-synuclein transgenic mice and Parkinsonian. Oncotarget, 2017, 8, 15-28.	1.8	52
17	Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction. PLoS ONE, 2016, 11, e0152931.	2.5	26
18	Association of DYRK1A polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neuroscience Letters, 2016, 632, 39-43.	2.1	17

Shaomin Li

#	Article	IF	CITATIONS
19	The biomarkers of immune dysregulation and inflammation response in Parkinson disease. Translational Neurodegeneration, 2016, 5, 16.	8.0	53
20	Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiology of Disease, 2016, 85, 111-121.	4.4	120
21	Complement <i>C3</i> -Deficient Mice Fail to Display Age-Related Hippocampal Decline. Journal of Neuroscience, 2015, 35, 13029-13042.	3.6	286
22	Secreted Amyloid β-Proteins in a Cell Culture Model Include N-Terminally Extended Peptides That Impair Synaptic Plasticity. Biochemistry, 2014, 53, 3908-3921.	2.5	85
23	Environmental Novelty Activates β2-Adrenergic Signaling to Prevent the Impairment of Hippocampal LTP by Aβ Oligomers. Neuron, 2013, 77, 929-941.	8.1	152
24	Soluble Aβ Oligomers Inhibit Long-Term Potentiation through a Mechanism Involving Excessive Activation of Extrasynaptic NR2B-Containing NMDA Receptors. Journal of Neuroscience, 2011, 31, 6627-6638.	3.6	530
25	How do soluble oligomers of amyloid β-protein impair hippocampal synaptic plasticity?. Frontiers in Cellular Neuroscience, 2010, 4, 5.	3.7	27
26	Soluble Oligomers of Amyloid β Protein Facilitate Hippocampal Long-Term Depression by Disrupting Neuronal Glutamate Uptake. Neuron, 2009, 62, 788-801.	8.1	818
27	Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Medicine, 2008, 14, 837-842.	30.7	3,225
28	The effect of atropine administered in the medial septum or hippocampus on high- and low-frequency theta rhythms in the hippocampus of urethane anesthetized rats. Synapse, 2007, 61, 412-419.	1.2	37
29	A brief, but repeated, swimming protocol is sufficient to overcome amyloid βâ€protein inhibition of hippocampal longâ€ŧerm potentiation. European Journal of Neuroscience, 2007, 26, 1289-1298.	2.6	8
30	The Environment versus Genetics in Controlling the Contribution of MAP Kinases to Synaptic Plasticity. Current Biology, 2006, 16, 2303-2313.	3.9	50
31	Distinct Roles for Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) and Ras-GRF2 in the Induction of Long-Term Potentiation and Long-Term Depression. Journal of Neuroscience, 2006, 26, 1721-1729.	3.6	172
32	Atropine acts in both medial septum and hippocampus to suppress theta rhythm in urethane anesthetized rats. FASEB Journal, 2006, 20, LB22.	0.5	0
33	GABAergic Control of the Ascending Input From the Median Raphe Nucleus to the Limbic System. Journal of Neurophysiology, 2005, 94, 2561-2574.	1.8	21