
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ebola haemorrhagic fever. Lancet, The, 2011, 377, 849-862.	6.3	1,101
2	Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science, 1993, 262, 914-917.	6.0	1,039
3	Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature, 2007, 445, 319-323.	13.7	892
4	Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6771-6776.	3.3	735
5	Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Medicine, 2005, 11, 786-790.	15.2	607
6	Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5762-5767.	3.3	453
7	Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature, 2004, 431, 703-707.	13.7	434
8	Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV–infected rhesus macaques. Nature Medicine, 2013, 19, 1313-1317.	15.2	412
9	Person-to-Person Transmission of Nipah Virus in a Bangladeshi Community. Emerging Infectious Diseases, 2007, 13, 1031-1037.	2.0	387
10	Properties of Replication-Competent Vesicular Stomatitis Virus Vectors Expressing Glycoproteins of Filoviruses and Arenaviruses. Journal of Virology, 2004, 78, 5458-5465.	1.5	327
11	Clinical, Virologic, and Immunologic Followâ€Up of Convalescent Ebola Hemorrhagic Fever Patients and Their Household Contacts, Kikwit, Democratic Republic of the Congo. Journal of Infectious Diseases, 1999, 179, S28-S35.	1.9	323
12	Ebola virus: from discovery to vaccine. Nature Reviews Immunology, 2003, 3, 677-685.	10.6	278
13	The Pathogenesis of Ebola Virus Disease. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 387-418.	9.6	266
14	Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16598-16603.	3.3	264
15	Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science, 2014, 346, 987-991.	6.0	262
16	Tyro3 Family-Mediated Cell Entry of Ebola and Marburg Viruses. Journal of Virology, 2006, 80, 10109-10116.	1.5	248
17	Effective Post-Exposure Treatment of Ebola Infection. PLoS Pathogens, 2007, 3, e2.	2.1	246
18	Single-Injection Vaccine Protects Nonhuman Primates against Infection with Marburg Virus and Three Species of Ebola Virus. Journal of Virology, 2009, 83, 7296-7304.	1.5	241

#	Article	IF	CITATIONS
19	Human Macrophage C-Type Lectin Specific for Galactose and N -Acetylgalactosamine Promotes Filovirus Entry. Journal of Virology, 2004, 78, 2943-2947.	1.5	237
20	Antibodies are necessary for rVSV/ZEBOV-GP–mediated protection against lethal Ebola virus challenge in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1893-1898.	3.3	236
21	Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. Journal of Virology, 1996, 70, 2208-2214.	1.5	228
22	Development of a New Vaccine for the Prevention of Lassa Fever. PLoS Medicine, 2005, 2, e183.	3.9	223
23	Infection and Activation of Monocytes by Marburg and Ebola Viruses. Journal of Virology, 2001, 75, 11025-11033.	1.5	220
24	Ebola Virus Enters Host Cells by Macropinocytosis and Clathrin-Mediated Endocytosis. Journal of Infectious Diseases, 2011, 204, S957-S967.	1.9	219
25	A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Science Translational Medicine, 2015, 7, 301ra132.	5.8	214
26	VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science, 2015, 349, 739-742.	6.0	213
27	The ecology of Ebola virus. Trends in Microbiology, 2007, 15, 408-416.	3.5	201
28	Reverse Genetics Demonstrates that Proteolytic Processing of the Ebola Virus Glycoprotein Is Not Essential for Replication in Cell Culture. Journal of Virology, 2002, 76, 406-410.	1.5	199
29	Molecular Determinants of Ebola Virus Virulence in Mice. PLoS Pathogens, 2006, 2, e73.	2.1	198
30	Utilization of autopsy RNA for the synthesis of the nucleocapsid antigen of a newly recognized virus associated with hantavirus pulmonary syndrome. Virus Research, 1993, 30, 351-367.	1.1	194
31	Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerging Microbes and Infections, 2020, 9, 2673-2684.	3.0	193
32	Infection with MERS-CoV Causes Lethal Pneumonia in the Common Marmoset. PLoS Pathogens, 2014, 10, e1004250.	2.1	186
33	Recombinant Vesicular Stomatitis Virus–Based Vaccines Against Ebola and Marburg Virus Infections. Journal of Infectious Diseases, 2011, 204, S1075-S1081.	1.9	183
34	Inclusion Bodies Are a Site of Ebolavirus Replication. Journal of Virology, 2012, 86, 11779-11788.	1.5	183
35	An <i>Alphavirus</i> -derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Science Translational Medicine, 2020, 12, .	5.8	181
36	Genome Structure and Variability of a Virus Causing Hantavirus Pulmonary Syndrome. Virology, 1994, 200, 715-723.	1.1	179

#	Article	IF	CITATIONS
37	Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine, 2008, 26, 6894-6900.	1.7	179
38	Vesicular Stomatitis Virus-Based Ebola Vaccine Is Well-Tolerated and Protects Immunocompromised Nonhuman Primates. PLoS Pathogens, 2008, 4, e1000225.	2.1	177
39	Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool. Emerging Infectious Diseases, 2016, 22, 331-4.	2.0	175
40	Viral hemorrhagic fever – a vascular disease?. Thrombosis and Haemostasis, 2003, 89, 967-972.	1.8	170
41	Postexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessment. Lancet, The, 2006, 367, 1399-1404.	6.3	166
42	Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Science Translational Medicine, 2019, 11, .	5.8	166
43	Effects of Ebola Virus Glycoproteins on Endothelial Cell Activation and Barrier Function. Journal of Virology, 2005, 79, 10442-10450.	1.5	165
44	Assembly and Budding of Ebolavirus. PLoS Pathogens, 2006, 2, e99.	2.1	158
45	Marburg virus, a filovirus: méssenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Research, 1992, 24, 1-19.	1.1	155
46	A New Ebola Virus Nonstructural Glycoprotein Expressed through RNA Editing. Journal of Virology, 2011, 85, 5406-5414.	1.5	153
47	Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends in Molecular Medicine, 2006, 12, 206-215.	3.5	152
48	Nasal Delivery of an Adenovirus-Based Vaccine Bypasses Pre-Existing Immunity to the Vaccine Carrier and Improves the Immune Response in Mice. PLoS ONE, 2008, 3, e3548.	1.1	152
49	Characterization of Filoviruses Based on Differences in Structure and Antigenicity of the Virion Glycoprotein. Virology, 1994, 199, 469-473.	1.1	150
50	Disease modeling for Ebola and Marburg viruses. DMM Disease Models and Mechanisms, 2009, 2, 12-17.	1.2	150
51	Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of African green monkeys. Science Translational Medicine, 2021, 13, .	5.8	146
52	Management of Accidental Exposure to Ebola Virus in the Biosafety Level 4 Laboratory, Hamburg, Germany. Journal of Infectious Diseases, 2011, 204, S785-S790.	1.9	138
53	Recombinant Vesicular Stomatitis Virus Vector Mediates Postexposure Protection against Sudan Ebola Hemorrhagic Fever in Nonhuman Primates. Journal of Virology, 2008, 82, 5664-5668.	1.5	136
54	A Neutralizing Human Monoclonal Antibody Protects African Green Monkeys from Hendra Virus Challenge. Science Translational Medicine, 2011, 3, 105ra103.	5.8	135

#	Article	IF	CITATIONS
55	Immune Parameters Correlate with Protection Against Ebola Virus Infection in Rodents and Nonhuman Primates. Science Translational Medicine, 2012, 4, 158ra146.	5.8	135
56	A Novel Life Cycle Modeling System for Ebola Virus Shows a Genome Length-Dependent Role of VP24 in Virus Infectivity. Journal of Virology, 2014, 88, 10511-10524.	1.5	134
57	Mucosal Immunization of Cynomolgus Macaques with the VSVΔG/ZEBOVGP Vaccine Stimulates Strong Ebola GP-Specific Immune Responses. PLoS ONE, 2009, 4, e5547.	1.1	130
58	Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Nature Communications, 2021, 12, 2295.	5.8	130
59	Ebola. New England Journal of Medicine, 2020, 382, 1832-1842.	13.9	128
60	Mutation rate and genotype variation of Ebola virus from Mali case sequences. Science, 2015, 348, 117-119.	6.0	127
61	Pneumonia from Human Coronavirus in a Macaque Model. New England Journal of Medicine, 2013, 368, 1560-1562.	13.9	126
62	Glycosylation and oligomerization of the spike protein of marburg virus. Virology, 1991, 182, 353-356.	1.1	123
63	Infection of Nail^ve Target Cells with Virus-Like Particles: Implications for the Function of Ebola Virus VP24. Journal of Virology, 2006, 80, 7260-7264.	1.5	123
64	Ebola virus vaccines: an overview of current approaches. Expert Review of Vaccines, 2014, 13, 521-531.	2.0	122
65	Protective Efficacy of Neutralizing Monoclonal Antibodies in a Nonhuman Primate Model of Ebola Hemorrhagic Fever. PLoS ONE, 2012, 7, e36192.	1.1	121
66	A Hendra Virus G Glycoprotein Subunit Vaccine Protects African Green Monkeys from Nipah Virus Challenge. Science Translational Medicine, 2012, 4, 146ra107.	5.8	121
67	Ebola and Marburg haemorrhagic fever. Journal of Clinical Virology, 2015, 64, 111-119.	1.6	119
68	Therapeutic Treatment of Nipah Virus Infection in Nonhuman Primates with a Neutralizing Human Monoclonal Antibody. Science Translational Medicine, 2014, 6, 242ra82.	5.8	117
69	Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection: Table 1 Journal of Infectious Diseases, 2015, 212, S91-S97.	1.9	116
70	Gamma Irradiation as an Effective Method for Inactivation of Emerging Viral Pathogens. American Journal of Tropical Medicine and Hygiene, 2019, 100, 1275-1277.	0.6	116
71	Clinical Outcome of Henipavirus Infection in Hamsters Is Determined by the Route and Dose of Infection. Journal of Virology, 2011, 85, 7658-7671.	1.5	115
72	The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Does Not Replicate in Syrian Hamsters. PLoS ONE, 2013, 8, e69127.	1,1	114

HEINRICH FELDMANN

#	Article	IF	CITATIONS
73	Assessment of a Vesicular Stomatitis Virus–Based Vaccine by Use of the Mouse Model of Ebola Virus Hemorrhagic Fever. Journal of Infectious Diseases, 2007, 196, S404-S412.	1.9	113
74	Generation of biologically contained Ebola viruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1129-1133.	3.3	113
75	Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine. Journal of Virology, 2006, 80, 9659-9666.	1.5	112
76	Therapeutic strategies to target the Ebola virus life cycle. Nature Reviews Microbiology, 2019, 17, 593-606.	13.6	110
77	Oligomerization of Ebola Virus VP40 Is Essential for Particle Morphogenesis and Regulation of Viral Transcription. Journal of Virology, 2010, 84, 7053-7063.	1.5	109
78	A Recombinant Vesicular Stomatitis Virus-Based Lassa Fever Vaccine Protects Guinea Pigs and Macaques against Challenge with Geographically and Genetically Distinct Lassa Viruses. PLoS Neglected Tropical Diseases, 2015, 9, e0003736.	1.3	109
79	A Syrian Golden Hamster Model Recapitulating Ebola Hemorrhagic Fever. Journal of Infectious Diseases, 2013, 207, 306-318.	1.9	108
80	Validation of assays to monitor immune responses in the Syrian golden hamster (Mesocricetus) Tj ETQq0 0 0 rgB	T Oyerloc	k 10 Tf 50 4 107
81	The vesicular stomatitis virus-based Ebola virus vaccine: From concept to clinical trials. Human Vaccines and Immunotherapeutics, 2018, 14, 2107-2113.	1.4	107
82	Reverse Genetics for Crimean-Congo Hemorrhagic Fever Virus. Journal of Virology, 2003, 77, 5997-6006.	1.5	104
83	Lethal Crimean-Congo Hemorrhagic Fever Virus Infection in Interferon α/β Receptor Knockout Mice Is Associated With High Viral Loads, Proinflammatory Responses, and Coagulopathy. Journal of Infectious Diseases, 2013, 207, 1909-1921.	1.9	104
84	Post-exposure treatments for Ebola and Marburg virus infections. Nature Reviews Drug Discovery, 2018, 17, 413-434.	21.5	104
85	Identification of Protective Epitopes on Ebola Virus Glycoprotein at the Single Amino Acid Level by Using Recombinant Vesicular Stomatitis Viruses. Journal of Virology, 2003, 77, 1069-1074.	1.5	103
86	Characterization of the L gene and 5' trailer region of Ebola virus Journal of General Virology, 1999, 80, 355-362.	1.3	102
87	Clinical aspects of Marburg hemorrhagic fever. Future Virology, 2011, 6, 1091-1106.	0.9	102
88	Vesicular Stomatitis Virus–Based Ebola Vaccines With Improved Cross-Protective Efficacy. Journal of Infectious Diseases, 2011, 204, S1066-S1074.	1.9	102
89	Release of Viral Glycoproteins during Ebola Virus Infection. Virology, 1998, 245, 110-119.	1.1	99

90A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2
infection in rhesus macaques. Cell Reports Medicine, 2021, 2, 100230.3.399

#	Article	IF	CITATIONS
91	Enzyme-Linked Immunosorbent Assay for Detection of Filovirus Species-Specific Antibodies. Vaccine Journal, 2010, 17, 1723-1728.	3.2	97
92	Host Response Dynamics Following Lethal Infection of Rhesus Macaques With Zaire ebolavirus. Journal of Infectious Diseases, 2011, 204, S991-S999.	1.9	95
93	Immunobiology of Ebola and Lassa virus infections. Nature Reviews Immunology, 2017, 17, 195-207.	10.6	95
94	Recombinant Vesicular Stomatitis Virus Vaccine Vectors Expressing Filovirus Glycoproteins Lack Neurovirulence in Nonhuman Primates. PLoS Neglected Tropical Diseases, 2012, 6, e1567.	1.3	95
95	Seroepidemiological Prevalence of Multiple Species of Filoviruses in Fruit Bats (<i>Eidolon) Tj ETQq1 1 0.784314</i>	rg <u>B</u> Ţ /Ove	rlock 10 Tf 5
96	The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Scientific Reports, 2015, 5, 14775.	1.6	91
97	Progress in filovirus vaccine development: evaluating the potential for clinical use. Expert Review of Vaccines, 2011, 10, 63-77.	2.0	90
98	Ebola GP-Specific Monoclonal Antibodies Protect Mice and Guinea Pigs from Lethal Ebola Virus Infection. PLoS Neglected Tropical Diseases, 2012, 6, e1575.	1.3	90
99	Ebola Virus Matrix Protein VP40 Uses the COPII Transport System for Its Intracellular Transport. Cell Host and Microbe, 2008, 3, 168-177.	5.1	89
100	Detection of Lassa Virus, Mali. Emerging Infectious Diseases, 2010, 16, 1123-1126.	2.0	89
101	A Replicating Cytomegalovirus-Based Vaccine Encoding a Single Ebola Virus Nucleoprotein CTL Epitope Confers Protection against Ebola Virus. PLoS Neglected Tropical Diseases, 2011, 5, e1275.	1.3	88
102	The Ebola Virus Glycoprotein Contributes to but Is Not Sufficient for Virulence In Vivo. PLoS Pathogens, 2012, 8, e1002847.	2.1	88
103	Lassa Fever in West Africa: Evidence for an Expanded Region of Endemicity. Zoonoses and Public Health, 2012, 59, 43-47.	0.9	87
104	Rescue of hantaan virus minigenomes. Virology, 2003, 306, 219-224.	1.1	85
105	Protective efficacy of neutralizing antibodies against Ebola virus infection. Vaccine, 2007, 25, 993-999.	1.7	84
106	The Ebola virus ribonucleoprotein complex: A novel VP30–L interaction identified. Virus Research, 2009, 140, 8-14.	1.1	84
107	Pandemic Swine-Origin H1N1 Influenza A Virus Isolates Show Heterogeneous Virulence in Macaques. Journal of Virology, 2011, 85, 1214-1223.	1.5	84
108	Susceptibility of swine cells and domestic pigs to SARS-CoV-2. Emerging Microbes and Infections, 2020, 9, 2278-2288.	3.0	84

#	Article	IF	CITATIONS
109	Vesicular Stomatitis Virus-Based Vaccines Protect Nonhuman Primates against Bundibugyo ebolavirus. PLoS Neglected Tropical Diseases, 2013, 7, e2600.	1.3	83
110	Ebola — A Growing Threat?. New England Journal of Medicine, 2014, 371, 1375-1378.	13.9	83
111	Discovery of an antibody for pan-ebolavirus therapy. Scientific Reports, 2016, 6, 20514.	1.6	83
112	The nucleotide sequence of the L gene of marburg virus, a filovirus: Homologies with paramyxoviruses and rhabdoviruses. Virology, 1992, 187, 534-547.	1.1	82
113	Emergency Postexposure Vaccination With Vesicular Stomatitis Virus–Vectored Ebola Vaccine After Needlestick. JAMA - Journal of the American Medical Association, 2015, 313, 1249.	3.8	82
114	An Ebola whole-virus vaccine is protective in nonhuman primates. Science, 2015, 348, 439-442.	6.0	81
115	Effective Chemical Inactivation of Ebola Virus. Emerging Infectious Diseases, 2016, 22, 1292-1294.	2.0	81
116	Delayed Disease Progression in Cynomolgus Macaques Infected with Ebola Virus Makona Strain. Emerging Infectious Diseases, 2015, 21, 1777-1783.	2.0	80
117	Marburg and Ebola Hemorrhagic Fevers: Does the Primary Course of Infection Depend on the Accessibility of Organ‧pecific Macrophages?. Clinical Infectious Diseases, 1998, 27, 404-406.	2.9	79
118	Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17982-17987.	3.3	79
119	Ebola Virion Attachment and Entry into Human Macrophages Profoundly Effects Early Cellular Gene Expression. PLoS Neglected Tropical Diseases, 2011, 5, e1359.	1.3	79
120	RNA Polymerase I-Driven Minigenome System for Ebola Viruses. Journal of Virology, 2005, 79, 4425-4433.	1.5	78
121	Postexposure Treatment of Marburg Virus Infection. Emerging Infectious Diseases, 2010, 16, 1119-1122.	2.0	78
122	Current ebola vaccines. Expert Opinion on Biological Therapy, 2012, 12, 859-872.	1.4	76
123	In Vitro and In Vivo Characterization of Recombinant Ebola Viruses Expressing Enhanced Green Fluorescent Protein. Journal of Infectious Diseases, 2007, 196, S313-S322.	1.9	74
124	Replication-Deficient Ebolavirus as a Vaccine Candidate. Journal of Virology, 2009, 83, 3810-3815.	1.5	73
125	Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins. Vaccine, 2014, 32, 2637-2644.	1.7	73
126	Use of Favipiravir to Treat Lassa Virus Infection in Macaques. Emerging Infectious Diseases, 2018, 24, 1696-1699.	2.0	72

#	Article	IF	CITATIONS
127	Vesicular Stomatitis Virus–based Vaccines against Lassa and Ebola Viruses. Emerging Infectious Diseases, 2015, 21, 305-7.	2.0	72
128	Comparison of the Pathogenicity of Nipah Virus Isolates from Bangladesh and Malaysia in the Syrian Hamster. PLoS Neglected Tropical Diseases, 2013, 7, e2024.	1.3	71
129	Recent advances in understanding Crimean–Congo hemorrhagic fever virus. F1000Research, 2018, 7, 1715.	0.8	71
130	Prospects for immunisation against Marburg and Ebola viruses. Reviews in Medical Virology, 2010, 20, 344-357.	3.9	69
131	Vesicular Stomatitis Virus-Based Vaccine Protects Hamsters against Lethal Challenge with Andes Virus. Journal of Virology, 2011, 85, 12781-12791.	1.5	68
132	Durability of a Vesicular Stomatitis Virus-Based Marburg Virus Vaccine in Nonhuman Primates. PLoS ONE, 2014, 9, e94355.	1.1	67
133	Interaction between TIM-1 and NPC1 Is Important for Cellular Entry of Ebola Virus. Journal of Virology, 2015, 89, 6481-6493.	1.5	67
134	An Upstream Open Reading Frame Modulates Ebola Virus Polymerase Translation and Virus Replication. PLoS Pathogens, 2013, 9, e1003147.	2.1	66
135	Rhabdovirus-Based Vaccine Platforms against Henipaviruses. Journal of Virology, 2015, 89, 144-154.	1.5	66
136	Pathophysiology of hantavirus pulmonary syndrome in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7114-7119.	3.3	65
137	Recent advances in research on Crimean-Congo hemorrhagic fever. Journal of Clinical Virology, 2015, 64, 137-143.	1.6	65
138	The Ebola Virus Glycoprotein and HIV-1 Vpu Employ Different Strategies to Counteract the Antiviral Factor Tetherin. Journal of Infectious Diseases, 2011, 204, S850-S860.	1.9	64
139	Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease. Vaccine, 2015, 33, 2823-2829.	1.7	64
140	A VSV-based Zika virus vaccine protects mice from lethal challenge. Scientific Reports, 2018, 8, 11043.	1.6	63
141	Pathogenesis and Host Response in Syrian Hamsters following Intranasal Infection with Andes Virus. PLoS Pathogens, 2011, 7, e1002426.	2.1	62
142	Efficacy of Vesicular Stomatitis Virus–Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus Makona. Journal of Infectious Diseases, 2016, 214, S360-S366.	1.9	62
143	A cynomolgus macaque model for Crimean–Congo haemorrhagic fever. Nature Microbiology, 2018, 3, 556-562.	5.9	62
144	The Syrian hamster model of hantavirus pulmonary syndrome. Antiviral Research, 2012, 95, 282-292.	1.9	61

#	Article	IF	CITATIONS
145	Ebola vaccine trials: progress in vaccine safety and immunogenicity. Expert Review of Vaccines, 2019, 18, 1229-1242.	2.0	61
146	Laboratory diagnosis of Ebola and Marburg hemorrhagic fever. Bulletin De La Societe De Pathologie Exotique, 2005, 98, 205-9.	0.3	61
147	Ebola virus ecology: a continuing mystery. Trends in Microbiology, 2004, 12, 433-437.	3.5	60
148	Cathepsin B & L Are Not Required for Ebola Virus Replication. PLoS Neglected Tropical Diseases, 2012, 6, e1923.	1.3	60
149	Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge. Virology, 2009, 383, 348-361.	1.1	59
150	An Animal Model for the Tickborne Flavivirus—Omsk Hemorrhagic Fever Virus. Journal of Infectious Diseases, 2005, 191, 100-108.	1.9	57
151	Lack of Protection Against Ebola Virus from Chloroquine in Mice and Hamsters. Emerging Infectious Diseases, 2015, 21, 1065-1067.	2.0	57
152	The Use of a Mobile Laboratory Unit in Support of Patient Management and Epidemiological Surveillance during the 2005 Marburg Outbreak in Angola. PLoS Neglected Tropical Diseases, 2011, 5, e1183.	1.3	56
153	Foodborne Transmission of Nipah Virus in Syrian Hamsters. PLoS Pathogens, 2014, 10, e1004001.	2.1	56
154	Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets. Antiviral Research, 2017, 143, 30-37.	1.9	56
155	Nipah Virus Transmission in a Hamster Model. PLoS Neglected Tropical Diseases, 2011, 5, e1432.	1.3	55
156	A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antiviral Research, 2013, 99, 207-213.	1.9	55
157	Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection. Scientific Reports, 2016, 6, 21674.	1.6	54
158	Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models. Cell Reports, 2018, 23, 1806-1816.	2.9	54
159	Thoracic radiography as a refinement methodology for the study of H1N1 influenza in cynomologus macaques (Macaca fascicularis). Comparative Medicine, 2010, 60, 389-95.	0.4	54
160	Protective Efficacy of a Bivalent Recombinant Vesicular Stomatitis Virus Vaccine in the Syrian Hamster Model of Lethal Ebola Virus Infection. Journal of Infectious Diseases, 2011, 204, S1090-S1097.	1.9	53
161	A cytomegalovirus-based vaccine provides long-lasting protection against lethal Ebola virus challenge after a single dose. Vaccine, 2015, 33, 2261-2266.	1.7	53
162	Filoviruses: Ecology, Molecular Biology, and Evolution. Advances in Virus Research, 2018, 100, 189-221.	0.9	53

#	Article	IF	CITATIONS
163	Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Neglected Tropical Diseases, 2018, 12, e0006628.	1.3	53
164	Antagonism of Type I Interferon Responses by New World Hantaviruses. Journal of Virology, 2010, 84, 11790-11801.	1.5	52
165	In Vitro and In Vivo Activity of Ribavirin against Andes Virus Infection. PLoS ONE, 2011, 6, e23560.	1.1	52
166	Single Immunization With a Monovalent Vesicular Stomatitis Virus–Based Vaccine Protects Nonhuman Primates Against Heterologous Challenge With Bundibugyo ebolavirus. Journal of Infectious Diseases, 2011, 204, S1082-S1089.	1.9	52
167	Ebola Virus RNA Editing Depends on the Primary Editing Site Sequence and an Upstream Secondary Structure. PLoS Pathogens, 2013, 9, e1003677.	2.1	52
168	Ebola: Lessons on Vaccine Development. Annual Review of Microbiology, 2018, 72, 423-446.	2.9	51
169	Antibody-Dependent Enhancement of Marburg Virus Infection. Journal of Infectious Diseases, 2011, 204, S978-S985.	1.9	50
170	Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean-Congo hemorrhagic fever virus in mice. Antiviral Research, 2018, 157, 18-26.	1.9	50
171	Geographic Distribution and Genetic Characterization of Lassa Virus in Sub-Saharan Mali. PLoS Neglected Tropical Diseases, 2013, 7, e2582.	1.3	49
172	Lymphopenia Associated with Highly Virulent H5N1 Virus Infection Due to Plasmacytoid Dendritic Cell–Mediated Apoptosis of T Cells. Journal of Immunology, 2014, 192, 5906-5912.	0.4	49
173	Ebola Virus Modulates Transforming Growth Factor β Signaling and Cellular Markers of Mesenchyme-Like Transition in Hepatocytes. Journal of Virology, 2014, 88, 9877-9892.	1.5	49
174	1918 H1N1 Influenza Virus Replicates and Induces Proinflammatory Cytokine Responses in Extrarespiratory Tissues of Ferrets. Journal of Infectious Diseases, 2018, 217, 1237-1246.	1.9	49
175	Two recombinant human monoclonal antibodies that protect against lethal Andes hantavirus infection in vivo. Science Translational Medicine, 2018, 10, .	5.8	49
176	A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nature Microbiology, 2021, 6, 187-195.	5.9	49
177	Vaccines for viral hemorrhagic fevers—progress and shortcomings. Current Opinion in Virology, 2013, 3, 343-351.	2.6	48
178	A Recently Isolated Lassa Virus From Mali Demonstrates Atypical Clinical Disease Manifestations and Decreased Virulence in Cynomolgus Macaques. Journal of Infectious Diseases, 2013, 207, 1316-1327.	1.9	47
179	Vesicular Stomatitis Virus-Based Vaccines for Prophylaxis and Treatment of Filovirus Infections. Journal of Bioterrorism & Biodefense, 2011, 01, .	0.1	47
180	Vaccination With a Highly Attenuated Recombinant Vesicular Stomatitis Virus Vector Protects Against Challenge With a Lethal Dose of Ebola Virus. Journal of Infectious Diseases, 2015, 212, S443-S451.	1.9	46

#	Article	IF	CITATIONS
181	New World Hantaviruses Activate IFNλ Production in Type I IFN-Deficient Vero E6 Cells. PLoS ONE, 2010, 5, e11159.	1.1	46
182	The adaptive immune response does not influence hantavirus disease or persistence in the <scp>S</scp> yrian hamster. Immunology, 2013, 140, 168-178.	2.0	44
183	Myxomavirus-Derived Serpin Prolongs Survival and Reduces Inflammation and Hemorrhage in an Unrelated Lethal Mouse Viral Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 4114-4127.	1.4	44
184	Modeling The Lifecycle Of Ebola Virus Under Biosafety Level 2 Conditions With Virus-like Particles Containing Tetracistronic Minigenomes. Journal of Visualized Experiments, 2014, , 52381.	0.2	44
185	A Single Dose of Modified Vaccinia Ankara expressing Ebola Virus Like Particles Protects Nonhuman Primates from Lethal Ebola Virus Challenge. Scientific Reports, 2018, 8, 864.	1.6	43
186	Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. Nature Communications, 2020, 11, 4253.	5.8	43
187	PlasmodiumParasitemia Associated With Increased Survival in Ebola Virus–Infected Patients. Clinical Infectious Diseases, 2016, 63, 1026-1033.	2.9	42
188	Transmission of henipaviruses. Current Opinion in Virology, 2018, 28, 7-11.	2.6	41
189	Pathogenicity and Viral Shedding of MERS-CoV in Immunocompromised Rhesus Macaques. Frontiers in Immunology, 2018, 9, 205.	2.2	41
190	A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. Genome Medicine, 2018, 10, 58.	3.6	41
191	A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. Npj Vaccines, 2020, 5, 4.	2.9	41
192	Molecular characterization of an isolate from the 1989/90 epizootic of Ebola virus Reston among macaques imported into the United States. Virus Research, 2002, 87, 155-163.	1.1	40
193	Personal Protective Equipment for Filovirus Epidemics: A Call for Better Evidence. Journal of Infectious Diseases, 2015, 212, S98-S100.	1.9	40
194	Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. Journal of Clinical Investigation, 2019, 130, 539-551.	3.9	40
195	Viral hemorrhagic fevers: advancing the level of treatment. BMC Medicine, 2012, 10, 31.	2.3	39
196	Functional Genomics Reveals the Induction of Inflammatory Response and Metalloproteinase Gene Expression during Lethal Ebola Virus Infection. Journal of Virology, 2011, 85, 9060-9068.	1.5	38
197	Protection Against Marburg Virus Using a Recombinant VSV-Vaccine Depends on T and B Cell Activation. Frontiers in Immunology, 2018, 9, 3071.	2.2	38
198	Dromedary camels in northern Mali have high seropositivity to MERS-CoV. One Health, 2017, 3, 41-43.	1.5	37

#	Article	IF	CITATIONS
199	Virus in Semen and the Risk of Sexual Transmission. New England Journal of Medicine, 2018, 378, 1440-1441.	13.9	37
200	Differential Innate Immune Responses Elicited by Nipah Virus and Cedar Virus Correlate with Disparate In Vivo Pathogenesis in Hamsters. Viruses, 2019, 11, 291.	1.5	37
201	Animal models for highly pathogenic emerging viruses. Current Opinion in Virology, 2013, 3, 205-209.	2.6	36
202	An Acute Immune Response to Middle East Respiratory Syndrome Coronavirus Replication Contributes to Viral Pathogenicity. American Journal of Pathology, 2016, 186, 630-638.	1.9	35
203	Inactivation of SARS-CoV-2 Laboratory Specimens. American Journal of Tropical Medicine and Hygiene, 2021, 104, 2195-2198.	0.6	35
204	Hydroxychloroquine prophylaxis and treatment is ineffective in macaque and hamster SARS-CoV-2 disease models. JCI Insight, 2020, 5, .	2.3	35
205	Immune Response to Marburg Virus Angola Infection in Nonhuman Primates. Journal of Infectious Diseases, 2015, 212, S234-S241.	1.9	34
206	Suppressor of Cytokine Signaling 3 Is an Inducible Host Factor That Regulates Virus Egress during Ebola Virus Infection. Journal of Virology, 2015, 89, 10399-10406.	1.5	34
207	Single low-dose VSV-EBOV vaccination protects cynomolgus macaques from lethal Ebola challenge. EBioMedicine, 2019, 49, 223-231.	2.7	34
208	Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Research, 2004, 106, 43-50.	1.1	33
209	Reverse genetics systems as tools for the development of novel therapies against filoviruses. Expert Review of Anti-Infective Therapy, 2014, 12, 1253-1263.	2.0	33
210	Antiviral Innate Responses Induced by VSV-EBOV Vaccination Contribute to Rapid Protection. MBio, 2019, 10, .	1.8	33
211	Syrian Hamsters (<i>Mesocricetus auratus</i>) Oronasally Inoculated With a Nipah Virus Isolate From Bangladesh or Malaysia Develop Similar Respiratory Tract Lesions. Veterinary Pathology, 2015, 52, 38-45.	0.8	32
212	Flexibility of Mobile Laboratory Unit in Support of Patient Management During the 2007 Ebolaâ€Zaire Outbreak in the Democratic Republic of Congo. Zoonoses and Public Health, 2012, 59, 151-157.	0.9	31
213	Transcriptomic analysis reveals a previously unknown role for CD8+ T-cells in rVSV-EBOV mediated protection. Scientific Reports, 2017, 7, 919.	1.6	31
214	Neutralizing Monoclonal Antibodies against the Gn and the Gc of the Andes Virus Glycoprotein Spike Complex Protect from Virus Challenge in a Preclinical Hamster Model. MBio, 2020, 11, .	1.8	31
215	Potent Vesicular Stomatitis Virus-Based Avian Influenza Vaccines Provide Long-Term Sterilizing Immunity against Heterologous Challenge. Journal of Virology, 2010, 84, 4611-4618.	1.5	30
216	A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever. Scientific Reports, 2016, 6, 39214.	1.6	30

#	Article	IF	CITATIONS
217	Ebola virus vaccines – reality or fiction?. Expert Review of Vaccines, 2016, 15, 1421-1430.	2.0	29
218	A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins. Viruses, 2021, 13, 314.	1.5	29
219	Hamster-Adapted Sin Nombre Virus Causes Disseminated Infection and Efficiently Replicates in Pulmonary Endothelial Cells without Signs of Disease. Journal of Virology, 2013, 87, 4778-4782.	1.5	28
220	Complete Genome Sequences of Three Ebola Virus Isolates from the 2014 Outbreak in West Africa. Genome Announcements, 2014, 2, .	0.8	28
221	African Green Monkeys Recapitulate the Clinical Experience with Replication of Live Attenuated Pandemic Influenza Virus Vaccine Candidates. Journal of Virology, 2014, 88, 8139-8152.	1.5	28
222	Transcriptional Correlates of Tolerance and Lethality in Mice Predict Ebola Virus Disease Patient Outcomes. Cell Reports, 2020, 30, 1702-1713.e6.	2.9	28
223	Recovery from Acute SARS-CoV-2 Infection and Development of Anamnestic Immune Responses in T Cell-Depleted Rhesus Macaques. MBio, 2021, 12, e0150321.	1.8	28
224	Safety of Recombinant VSV–Ebola Virus Vaccine Vector in Pigs. Emerging Infectious Diseases, 2015, 21, 702-704.	2.0	27
225	A Comparative Review of Animal Models of Middle East Respiratory Syndrome Coronavirus Infection. Veterinary Pathology, 2016, 53, 521-531.	0.8	27
226	Immunocompetent mouse model for Crimean-Congo hemorrhagic fever virus. ELife, 2021, 10, .	2.8	27
227	Lassa Virus Seroprevalence in Sibirilia Commune, Bougouni District, Southern Mali. Emerging Infectious Diseases, 2016, 22, 657-663.	2.0	26
228	Peri-exposure protection against Nipah virus disease using a single-dose recombinant vesicular stomatitis virus-based vaccine. Npj Vaccines, 2016, 1, .	2.9	26
229	Severity of Disease in Humanized Mice Infected With Ebola Virus or Reston Virus Is Associated With Magnitude of Early Viral Replication in Liver. Journal of Infectious Diseases, 2018, 217, 58-63.	1.9	26
230	Prophylactic and therapeutic efficacy of mAb treatment against MERS-CoV in common marmosets. Antiviral Research, 2018, 156, 64-71.	1.9	26
231	Crimean-Congo Hemorrhagic Fever Mouse Model Recapitulating Human Convalescence. Journal of Virology, 2019, 93, .	1.5	26
232	SARS-CoV2 variant-specific replicating RNA vaccines protect from disease following challenge with heterologous variants of concern. ELife, 2022, 11, .	2.8	26
233	Seasonal H3N2 influenza A virus fails to enhance <i>Staphylococcus aureus</i> co-infection in a non-human primate respiratory tract infection model. Virulence, 2013, 4, 707-715.	1.8	25
234	Long-Term Single-Dose Efficacy of a Vesicular Stomatitis Virus-Based Andes Virus Vaccine in Syrian Hamsters. Viruses, 2014, 6, 516-523.	1.5	25

#	Article	IF	CITATIONS
235	Therapy and prophylaxis of Ebola virus infections. Current Opinion in Investigational Drugs, 2005, 6, 823-30.	2.3	25
236	Marburg Hemorrhagic Fever — The Forgotten Cousin Strikes. New England Journal of Medicine, 2006, 355, 866-869.	13.9	24
237	Sequencing, Annotation and Analysis of the Syrian Hamster (Mesocricetus auratus) Transcriptome. PLoS ONE, 2014, 9, e112617.	1.1	24
238	<i>Stat1</i> -Deficient Mice Are Not an Appropriate Model for Efficacy Testing of Recombinant Vesicular Stomatitis Virus–Based Filovirus Vaccines. Journal of Infectious Diseases, 2015, 212, S404-S409.	1.9	24
239	Ebola Virus Replication and Disease Without Immunopathology in Mice Expressing Transgenes to Support Human Myeloid and Lymphoid Cell Engraftment. Journal of Infectious Diseases, 2016, 214, S308-S318.	1.9	24
240	Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014–2015. Journal of Infectious Diseases, 2016, 214, S169-S176.	1.9	24
241	Molnupiravir inhibits SARS-CoV-2 variants including Omicron in the hamster model. JCI Insight, 2022, 7,	2.3	24
242	Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters. PLoS Neglected Tropical Diseases, 2016, 10, e0005120.	1.3	23
243	Fcγ-receptor IIa-mediated Src Signaling Pathway Is Essential for the Antibody-Dependent Enhancement of Ebola Virus Infection. PLoS Pathogens, 2016, 12, e1006139.	2.1	23
244	Assessment of Rodents as Animal Models for Reston Ebolavirus. Journal of Infectious Diseases, 2011, 204, S968-S972.	1.9	22
245	Niemann-Pick C1 Heterogeneity of Bat Cells Controls Filovirus Tropism. Cell Reports, 2020, 30, 308-319.e5.	2.9	22
246	Lassa Virus Treatment Options. Microorganisms, 2021, 9, 772.	1.6	22
247	Preparing a Community Hospital to Manage Work-related Exposures to Infectious Agents in BioSafety Level 3 and 4 Laboratories. Emerging Infectious Diseases, 2010, 16, 373-378.	2.0	21
248	Next-Generation Sequencing Reveals a Controlled Immune Response to Zaire Ebola Virus Challenge in Cynomolgus Macaques Immunized with Vesicular Stomatitis Virus Expressing Zaire Ebola Virus Glycoprotein (VSVI"G/EBOVgp). Vaccine Journal, 2015, 22, 354-356.	3.2	21
249	Serosurvey of Crimean–Congo Hemorrhagic Fever Virus in Cattle, Mali, West Africa. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1341-1345.	0.6	21
250	Lifecycle modelling systems support inosine monophosphate dehydrogenase (IMPDH) as a pro-viral factor and antiviral target for New World arenaviruses. Antiviral Research, 2018, 157, 140-150.	1.9	21
251	Lethal Zika Virus Disease Models in Young and Older Interferon α/β Receptor Knock Out Mice. Frontiers in Cellular and Infection Microbiology, 2018, 8, 117.	1.8	21
252	Ebola Virus Infection in Commonly Used Laboratory Mouse Strains. Journal of Infectious Diseases, 2018, 218, S453-S457.	1.9	21

#	Article	IF	CITATIONS
253	Efficacy of favipiravir (T-705) against Crimean-Congo hemorrhagic fever virus infection in cynomolgus macaques. Antiviral Research, 2020, 181, 104858.	1.9	21
254	Ebolavirus in West Africa, and the use of experimental therapies or vaccines. BMC Biology, 2014, 12, 80.	1.7	20
255	Human immune system mouse models of Ebola virus infection. Current Opinion in Virology, 2017, 25, 90-96.	2.6	20
256	Kyasanur Forest Disease and Alkhurma Hemorrhagic Fever Virus—Two Neglected Zoonotic Pathogens. Microorganisms, 2020, 8, 1406.	1.6	20
257	The immune response to Nipah virus infection. Archives of Virology, 2012, 157, 1635-1641.	0.9	19
258	Assessing the contribution of interferon antagonism to the virulence of West African Ebola viruses. Nature Communications, 2015, 6, 8000.	5.8	19
259	Amending Koch's postulates for viral disease: When "growth in pure culture―leads to a loss of virulence. Antiviral Research, 2017, 137, 1-5.	1.9	19
260	Pathogenicity of Ebola and Marburg Viruses Is Associated With Differential Activation of the Myeloid Compartment in Humanized Triple Knockout-Bone Marrow, Liver, and Thymus Mice. Journal of Infectious Diseases, 2018, 218, S409-S417.	1.9	19
261	UK B.1.1.7 (Alpha) variant exhibits increased respiratory replication and shedding in nonhuman primates. Emerging Microbes and Infections, 2021, 10, 2173-2182.	3.0	19
262	Histologic pulmonary lesions of SARS-CoV-2 in 4 nonhuman primate species: An institutional comparative review. Veterinary Pathology, 2022, 59, 673-680.	0.8	19
263	Genus-specific recruitment of filovirus ribonucleoprotein complexes into budding particles. Journal of General Virology, 2011, 92, 2900-2905.	1.3	18
264	Expression profiling of lymph node cells from deer mice infected with Andes virus. BMC Immunology, 2013, 14, 18.	0.9	18
265	Differential Lymphocyte and Antibody Responses in Deer Mice Infected with Sin Nombre Hantavirus or Andes Hantavirus. Journal of Virology, 2014, 88, 8319-8331.	1.5	18
266	Loss of Interleukin 1 Receptor Antagonist Enhances Susceptibility to Ebola Virus Infection. Journal of Infectious Diseases, 2015, 212, S329-S335.	1.9	18
267	Development of an Immunochromatography Assay (QuickNavi-Ebola) to Detect Multiple Species of Ebolaviruses. Journal of Infectious Diseases, 2016, 214, S185-S191.	1.9	18
268	Domestic Pig Unlikely Reservoir for MERS-CoV. Emerging Infectious Diseases, 2017, 23, 985-988.	2.0	18
269	Single-Nucleotide Polymorphisms in Human NPC1 Influence Filovirus Entry Into Cells. Journal of Infectious Diseases, 2018, 218, S397-S402.	1.9	18
270	Novel mutations in Marburg virus glycoprotein associated with viral evasion from antibody mediated immune pressure. Journal of General Virology, 2013, 94, 876-883.	1.3	16

#	Article	IF	CITATIONS
271	Possible leap ahead in filovirus therapeutics. Cell Research, 2014, 24, 647-648.	5.7	16
272	Soluble Glycoprotein Is Not Required for Ebola Virus Virulence in Guinea Pigs. Journal of Infectious Diseases, 2015, 212, S242-S246.	1.9	16
273	Characterization of a novel STAT 2 knock-out hamster model of Crimean-Congo hemorrhagic fever virus pathogenesis. Scientific Reports, 2020, 10, 12378.	1.6	16
274	Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino oligomers. Journal of Antimicrobial Chemotherapy, 2021, 76, 413-417.	1.3	16
275	Reston virus causes severe respiratory disease in young domestic pigs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
276	SARS-CoV-2 reinfection prevents acute respiratory disease in Syrian hamsters but not replication in the upper respiratory tract. Cell Reports, 2022, 38, 110515.	2.9	16
277	Recombinant subunit vaccines protect guinea pigs from lethal Ebola virus challenge. Vaccine, 2019, 37, 6942-6950.	1.7	15
278	Recently Emerged Swine Influenza A Virus (H2N3) Causes Severe Pneumonia in Cynomolgus Macaques. PLoS ONE, 2012, 7, e39990.	1.1	15
279	Escape From Monoclonal Antibody Neutralization Affects Henipavirus Fitness In Vitro and In Vivo. Journal of Infectious Diseases, 2016, 213, 448-455.	1.9	14
280	T-Cells and Interferon Gamma Are Necessary for Survival Following Crimean-Congo Hemorrhagic Fever Virus Infection in Mice. Microorganisms, 2021, 9, 279.	1.6	14
281	The Ebola virus soluble glycoprotein contributes to viral pathogenesis by activating the MAP kinase signaling pathway. PLoS Pathogens, 2021, 17, e1009937.	2.1	14
282	Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease. Microbiology Spectrum, 2022, 10, .	1.2	14
283	In Vitro Evaluation of Antisense RNA Efficacy against Filovirus Infection, by Use of Reverse Genetics. Journal of Infectious Diseases, 2007, 196, S382-S389.	1.9	13
284	Development of a minigenome system for Andes virus, a New World hantavirus. Archives of Virology, 2012, 157, 2227-2233.	0.9	13
285	Animal Models of Tick-Borne Hemorrhagic Fever Viruses. Pathogens, 2013, 2, 402-421.	1.2	13
286	Natural Immunity to Ebola Virus in the Syrian Hamster Requires Antibody Responses. Journal of Infectious Diseases, 2015, 212, S271-S276.	1.9	13
287	Cluster of Cases of Hantavirus Pulmonary Syndrome in Alberta, Canada. American Journal of Tropical Medicine and Hygiene, 2007, 77, 914-918.	0.6	13
288	Filoviruses: Recent Advances and Future Challenges. Journal of Infectious Diseases, 2007, 196, S129-S130.	1.9	12

#	Article	IF	CITATIONS
289	Are we any closer to combating Ebola infections?. Lancet, The, 2010, 375, 1850-1852.	6.3	12
290	Development and Characterization of Broadly Cross-reactive Monoclonal Antibodies Against All Known <i>Ebolavirus</i> Species. Journal of Infectious Diseases, 2015, 212, S410-S413.	1.9	12
291	Laguna Negra Virus Infection Causes Hantavirus Pulmonary Syndrome in Turkish Hamsters (<i>Mesocricetus brandti</i>). Veterinary Pathology, 2016, 53, 182-189.	0.8	12
292	Enhanced detection of Rift Valley fever virus using molecular assays on whole blood samples. Journal of Clinical Virology, 2012, 54, 313-317.	1.6	11
293	Delineating Ebola entry. Science, 2015, 347, 947-948.	6.0	11
294	Delayed Inflammatory and Cell Death Responses Are Associated with Reduced Pathogenicity in Lujo Virus-Infected Cynomolgus Macaques. Journal of Virology, 2015, 89, 2543-2552.	1.5	11
295	The Crux of Ebola Diagnostics. Journal of Infectious Diseases, 2017, 216, 1340-1342.	1.9	11
296	Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment. Nature Communications, 2020, 11, 3736.	5.8	11
297	Purification of Crimean–Congo hemorrhagic fever virus nucleoprotein and its utility for serological diagnosis. Scientific Reports, 2021, 11, 2324.	1.6	11
298	Targeting Ebola virus replication through pharmaceutical intervention. Expert Opinion on Investigational Drugs, 2021, 30, 201-226.	1.9	11
299	Impact of intensive care unit supportive care on the physiology of Ebola virus disease in a universally lethal non-human primate model. Intensive Care Medicine Experimental, 2019, 7, 54.	0.9	11
300	Importin-α7 Is Involved in the Formation of Ebola Virus Inclusion Bodies but Is Not Essential for Pathogenicity in Mice. Journal of Infectious Diseases, 2015, 212, S316-S321.	1.9	10
301	Differential Ability of Pandemic and Seasonal H1N1 Influenza A Viruses To Alter the Function of Human Neutrophils. MSphere, 2018, 3, .	1.3	10
302	Human Polyclonal Antibodies Produced by Transchromosomal Cattle Provide Partial Protection Against Lethal Zaire Ebolavirus Challenge in Rhesus Macaques. Journal of Infectious Diseases, 2018, 218, S658-S661.	1.9	10
303	Monoclonal Antibody Cocktail Protects Hamsters From Lethal Marburg Virus Infection. Journal of Infectious Diseases, 2018, 218, S662-S665.	1.9	10
304	Establishment of a Genetically Confirmed Breeding Colony of Mastomys natalensis from Wild-Caught Founders from West Africa. Viruses, 2021, 13, 590.	1.5	10
305	Characterization of a Bivalent Vaccine Capable of Inducing Protection Against Both Ebola and Cross-clade H5N1 Influenza in Mice. Journal of Infectious Diseases, 2015, 212, S435-S442.	1.9	9
306	Animal models for Lassa virus infection. Current Opinion in Virology, 2019, 37, 112-117.	2.6	9

#	Article	IF	CITATIONS
307	Cluster of cases of hantavirus pulmonary syndrome in Alberta, Canada. American Journal of Tropical Medicine and Hygiene, 2007, 77, 914-8.	0.6	9
308	The Ebola Virus Soluble Glycoprotein (sGP) Does Not Affect Lymphocyte Apoptosis and Adhesion to Activated Endothelium. Journal of Infectious Diseases, 2011, 204, S947-S952.	1.9	8
309	Prophylactic efficacy of a human monoclonal antibody against MERS-CoV in the common marmoset. Antiviral Research, 2019, 163, 70-74.	1.9	8
310	Evaluation of drugs for Potential Repurposing against COVID-19 using a Tier-Based Scoring System. Antiviral Therapy, 2020, 25, 223-231.	0.6	8
311	Novel neutralizing monoclonal antibodies protect rodents against lethal filovirus challenges. Trials in Vaccinology, 2014, 3, 89-94.	1.2	7
312	Clinical Chemistry of Patients With Ebola in Monrovia, Liberia. Journal of Infectious Diseases, 2016, 214, S303-S307.	1.9	7
313	Humanized Mice—A Neoteric Animal Disease Model for Ebola Virus?: Table 1 Journal of Infectious Diseases, 2016, 213, 691-693.	1.9	7
314	Utility of primary cells to examine NPC1 receptor expression in Mops condylurus, a potential Ebola virus reservoir. PLoS Neglected Tropical Diseases, 2020, 14, e0007952.	1.3	7
315	An Intramuscular DNA Vaccine for SARS-CoV-2 Decreases Viral Lung Load but Not Lung Pathology in Syrian Hamsters. Microorganisms, 2021, 9, 1040.	1.6	7
316	Intradermal delivery of a synthetic DNA vaccine protects macaques from Middle East respiratory syndrome coronavirus. JCI Insight, 2021, 6, .	2.3	7
317	Ebola Virus Glycoprotein Domains Associated with Protective Efficacy. Vaccines, 2021, 9, 630.	2.1	7
318	Ebola: Facing a New Transboundary Animal Disease?. Developments in Biologicals, 2013, 135, 201-209.	0.4	7
319	Reverse Genetics Systems for Filoviruses. Methods in Molecular Biology, 2017, 1602, 159-170.	0.4	6
320	Distinct Biological Phenotypes of Marburg and Ravn Virus Infection in Macaques. Journal of Infectious Diseases, 2018, 218, S458-S465.	1.9	6
321	Therapeutic Efficacy of Human Monoclonal Antibodies against Andes Virus Infection in Syrian Hamsters. Emerging Infectious Diseases, 2021, 27, 2707-2710.	2.0	6
322	Ebolavirus: An Overview of Molecular and Clinical Pathogenesis. Methods in Molecular Biology, 2017, 1628, 39-50.	0.4	6
323	Dendritic Cells Generated From Mops condylurus, a Likely Filovirus Reservoir Host, Are Susceptible to and Activated by Zaire Ebolavirus Infection. Frontiers in Immunology, 2019, 10, 2414.	2.2	5
324	High dose of vesicular stomatitis virus-vectored Ebola virus vaccine causes vesicular disease in swine without horizontal transmission. Emerging Microbes and Infections, 2021, 10, 651-663.	3.0	5

#	Article	IF	CITATIONS
325	Development of a nonhuman primate model for mammalian bornavirus infection. , 2022, 1, .		5
326	Response to Comment on "Mutation rate and genotype variation of Ebola virus from Mali case sequences― Science, 2016, 353, 658-658.	6.0	4
327	Oseltamivir Is Effective against 1918 Influenza Virus Infection of Macaques but Vulnerable to Escape. MBio, 2019, 10, .	1.8	4
328	Bacillus paranthracis Isolate from Blood of Fatal Ebola Virus Disease Case. Pathogens, 2020, 9, 475.	1.2	4
329	Nipah Virus Efficiently Replicates in Human Smooth Muscle Cells without Cytopathic Effect. Cells, 2021, 10, 1319.	1.8	4
330	Host Competency of the Multimammate Rat Mastomys natalensis Demonstrated by Prolonged Spirochetemias with the African Relapsing Fever Spirochete Borrelia crocidurae. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1272-1275.	0.6	4
331	A live-attenuated viral vector vaccine protects mice against lethal challenge with Kyasanur Forest disease virus. Npj Vaccines, 2021, 6, 152.	2.9	4
332	Evaluation of viral load in patients with Ebola virus disease in Liberia: a retrospective observational study. Lancet Microbe, The, 2022, 3, e533-e542.	3.4	4
333	Temporal analysis of Lassa virus infection and transmission in experimentally infected <i>Mastomys natalensis</i> ., 2022, 1, .		4
334	Arenaviruses and filoviruses. , 2012, , 546-558.		3
335	Birth and Pathogenesis of Rogue Respiratory Viruses. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 449-471.	9.6	3
336	Ebola virus is unlikely to become endemic in West Africa. Nature Microbiology, 2016, 1, 16007.	5.9	3
337	The Effect of Plasmodium on the Outcome of Ebola Virus Infection in a Mouse Model. Journal of Infectious Diseases, 2018, 218, S434-S437.	1.9	3
338	Multiple DNA viruses identified in multimammate mouse (Mastomys natalensis) populations from across regions of sub-Saharan Africa. Archives of Virology, 2020, 165, 2291-2299.	0.9	3
339	Prior SARS-CoV-2 Infection Prevents Acute Disease and Lung Pathology in Reinfected Syrian Hamsters but not Virus Replication in the Upper Respiratory Tract. SSRN Electronic Journal, 0, , .	0.4	3
340	A biaryl sulfonamide derivative as a novel inhibitor of filovirus infection. Antiviral Research, 2020, 183, 104932.	1.9	2
341	Mastomys natalensis Has a Cellular Immune Response Profile Distinct from Laboratory Mice. Viruses, 2021, 13, 729.	1.5	2
342	Favipiravir (T-705) Protects IFNARâ^'/â^' Mice against Lethal Zika Virus Infection in a Sex-Dependent Manner. Microorganisms, 2021, 9, 1178.	1.6	2

#	Article	IF	CITATIONS
343	Hematologic and serum biochemistry reference intervals using defined ASCVP methodology for laboratory natal multimammate mice (Mastomys natalensis). Laboratory Animals, 2021, 55, 002367722110185.	0.5	2
344	Alkhurma haemorrhagic fever virus causes lethal disease in IFNAR ^{-/-} mice. Emerging Microbes and Infections, 2021, 10, 1077-1087.	3.0	2
345	Three-Week Old Pigs Are Not Susceptible to Productive Infection with SARS-COV-2. Microorganisms, 2022, 10, 407.	1.6	2
346	Dedication: Jim Orzechowski (1944–2003) and Michael Kiley (1942–2004). Journal of Infectious Diseases, 2007, 196, S127-S128.	1.9	1
347	Hemorrhagic Fevers: Endothelial Cells and Ebola-Virus Hemorrhagic Fever. , 2007, , 1311-1319.		1
348	Ebola Conquers West Africa $\hat{a} \in$ " More to Come?. EBioMedicine, 2014, 1, 2-3.	2.7	1
349	Characterization of Ebola Virus Risk to Bedside Providers in an Intensive Care Environment. Microorganisms, 2021, 9, 498.	1.6	1
350	Responses to Ebola and Marburg Virus Infections. , 2009, , 371-390.		1
351	Reply to Colebunders. Clinical Infectious Diseases, 2017, 64, 232.2-232.	2.9	0
352	Tip Your Cap for Ebola Virus Neutralization. Immunity, 2018, 49, 204-206.	6.6	0
353	Continuing Orthohantavirus Circulation in Deer Mice in Western Montana. Viruses, 2021, 13, 1006.	1.5	0
354	Methanol Fixation, but not Giemsa Staining, Inactivates Ebola and Lassa Viruses in Peripheral Blood Smears Made on Plastic Microscope Slides. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2085-2090.	0.6	0