
## Jangwon Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/213031/publications.pdf Version: 2024-02-01



IANOWON SEO

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.<br>Science, 2015, 348, 1234-1237.                                                                                   | 6.0  | 5,529     |
| 2  | Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517, 476-480.                                                                                                 | 13.7 | 5,478     |
| 3  | lodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells.<br>Science, 2017, 356, 1376-1379.                                                                             | 6.0  | 4,721     |
| 4  | Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590, 587-593.                                                                                                                   | 13.7 | 1,972     |
| 5  | Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511-515.                                                                                                 | 13.7 | 1,867     |
| 6  | A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689.                                                                       | 19.8 | 1,856     |
| 7  | Colloidally prepared La-doped BaSnO <sub>3</sub> electrodes for efficient, photostable perovskite solar cells. Science, 2017, 356, 167-171.                                                                     | 6.0  | 1,045     |
| 8  | <i>o</i> -Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite<br>Solar Cells. Journal of the American Chemical Society, 2014, 136, 7837-7840.                                | 6.6  | 702       |
| 9  | Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor.<br>Energy and Environmental Science, 2014, 7, 2614-2618.                                                     | 15.6 | 692       |
| 10 | Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through<br>SnF <sub>2</sub> –Pyrazine Complex. Journal of the American Chemical Society, 2016, 138, 3974-3977.                         | 6.6  | 658       |
| 11 | Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy<br>and Environmental Science, 2014, 7, 2642-2646.                                                         | 15.6 | 622       |
| 12 | Beneficial Effects of PbI <sub>2</sub> Incorporated in Organo‣ead Halide Perovskite Solar Cells.<br>Advanced Energy Materials, 2016, 6, 1502104.                                                                | 10.2 | 387       |
| 13 | Rational Strategies for Efficient Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 562-572.                                                                                                     | 7.6  | 311       |
| 14 | Understanding how excess lead iodide precursor improves halide perovskite solar cell performance.<br>Nature Communications, 2018, 9, 3301.                                                                      | 5.8  | 271       |
| 15 | Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells. Energy and Environmental Science, 2017, 10, 2109-2116.               | 15.6 | 169       |
| 16 | Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nature Communications, 2020, 11, 5146.                                         | 5.8  | 165       |
| 17 | Fabrication of metal-oxide-free CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> perovskite solar cells processed at low temperature. Journal of Materials Chemistry A, 2015, 3, 3271-3275.                     | 5.2  | 162       |
| 18 | Structural features and their functions in surfactant-armoured methylammonium lead iodide<br>perovskites for highly efficient and stable solar cells. Energy and Environmental Science, 2018, 11,<br>2188-2197. | 15.6 | 162       |

JANGWON SEO

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Reducing Carrier Density in Formamidinium Tin Perovskites and Its Beneficial Effects on Stability and Efficiency of Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 46-53.                                        | 8.8  | 158       |
| 20 | Sequentially Fluorinated PTAA Polymers for Enhancing <i>V</i> <sub>OC</sub> of Highâ€Performance<br>Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801668.                                               | 10.2 | 151       |
| 21 | Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy and Environmental Science, 2020, 13, 4854-4861.                                | 15.6 | 137       |
| 22 | A Lowâ€Temperature Thinâ€Film Encapsulation for Enhanced Stability of a Highly Efficient Perovskite<br>Solar Cell. Advanced Energy Materials, 2018, 8, 1701928.                                                        | 10.2 | 136       |
| 23 | Gravureâ€Printed Flexible Perovskite Solar Cells: Toward Rollâ€ŧoâ€Roll Manufacturing. Advanced Science,<br>2019, 6, 1802094.                                                                                          | 5.6  | 115       |
| 24 | Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells. Chemical Science, 2017, 8, 734-741.                                                                      | 3.7  | 102       |
| 25 | Effective Electron Blocking of CuPCâ€Doped Spiroâ€OMeTAD for Highly Efficient Inorganic–Organic<br>Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501320.                                         | 10.2 | 84        |
| 26 | Fast two-step deposition of perovskite <i>via</i> mediator extraction treatment for large-area,<br>high-performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 12447-12454.                    | 5.2  | 83        |
| 27 | Selective Defect Passivation and Topographical Control of 4â€Dimethylaminopyridine at Grain Boundary<br>for Efficient and Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003382.          | 10.2 | 82        |
| 28 | Achieving Longâ€Term Operational Stability of Perovskite Solar Cells with a Stabilized Efficiency<br>Exceeding 20% after 1000 h. Advanced Science, 2019, 6, 1900528.                                                   | 5.6  | 70        |
| 29 | Toward Efficient Perovskite Solar Cells: Progress, Strategies, and Perspectives. ACS Energy Letters, 2022, 7, 2084-2091.                                                                                               | 8.8  | 68        |
| 30 | Methoxy-Functionalized Triarylamine-Based Hole-Transporting Polymers for Highly Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3304-3313.                                                   | 8.8  | 59        |
| 31 | Highly efficient and stable flexible perovskite solar cells enabled by using plasma-polymerized-fluorocarbon antireflection layer. Nano Energy, 2021, 82, 105737.                                                      | 8.2  | 46        |
| 32 | Transparent Electrodes Consisting of a Surfaceâ€Treated Buffer Layer Based on Tungsten Oxide for<br>Semitransparent Perovskite Solar Cells and Fourâ€Terminal Tandem Applications. Small Methods, 2020,<br>4, 2000074. | 4.6  | 41        |
| 33 | Defect-Tolerant Sodium-Based Dopant in Charge Transport Layers for Highly Efficient and Stable<br>Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1198-1205.                                                      | 8.8  | 33        |
| 34 | Metalâ€Free Phthalocyanine as a Hole Transporting Material and a Surface Passivator for Efficient and<br>Stable Perovskite Solar Cells. Small Methods, 2021, 5, e2001248.                                              | 4.6  | 33        |
| 35 | Kinetics of light-induced degradation in semi-transparent perovskite solar cells. Solar Energy<br>Materials and Solar Cells, 2021, 219, 110776.                                                                        | 3.0  | 29        |
| 36 | Copper Oxide Buffer Layers by Pulsedâ€Chemical Vapor Deposition for Semitransparent Perovskite Solar<br>Cells. Advanced Materials Interfaces, 2021, 8, .                                                               | 1.9  | 23        |

JANGWON SEO

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Thermally Induced Perovskite Crystal Control Strategy for Efficient and Photostable Wideâ€Bandgap<br>Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000033.                                    | 3.1  | 22        |
| 38 | Molecular Engineering for Functionâ€Tailored Interface Modifier in Highâ€Performance Perovskite Solar<br>Cells. Advanced Energy Materials, 2022, 12, .                                         | 10.2 | 16        |
| 39 | Roll-to-roll manufacturing toward lab-to-fab-translation of perovskite solar cells. APL Materials, 2021, 9, .                                                                                  | 2.2  | 14        |
| 40 | High-performance, large-area semitransparent and tandem perovskite solar cells featuring highly scalable a-ITO/Ag mesh 3D top electrodes. Nano Energy, 2022, 95, 106978.                       | 8.2  | 14        |
| 41 | Transparent Electrodes with Enhanced Infrared Transmittance for Semitransparent and Four-Terminal<br>Tandem Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 30497-30503. | 4.0  | 11        |
| 42 | Thermally activated, light-induced electron-spin-resonance spin density reflected by photocurrents in a perovskite solar cell. Applied Physics Letters, 2019, 114, 013903.                     | 1.5  | 10        |
| 43 | Perspective: approaches for layers above the absorber in perovskite solar cells for semitransparent and tandem applications. Materials Today Energy, 2021, 21, 100729.                         | 2.5  | 5         |
| 44 | Ambient Airâ€Processed Wideâ€Bandgap Perovskite Solar Cells with Wellâ€Controlled Film Morphology for<br>Fourâ€Terminal Tandem Application. Solar Rrl, 2022, 6, .                              | 3.1  | 4         |
| 45 | Influence of Photon Pump Fluence on Charge Carriers in FAPbI3 and Manganite Perovskites. Advances in Chemical Engineering and Science, 2022, 12, 54-64.                                        | 0.2  | 0         |