
Daniel C Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130075/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Non-invasive imaging in coronary syndromes: recommendations of the European Association of Cardiovascular Imaging and the American Society of Echocardiography, in collaboration with the American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. European Heart Journal Cardiovascular Imaging,	1.2	29
2	Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart. , 2022, 1, 334-343.		43
3	Optimal saturation recovery time for minimizing the underestimation of arterial input function in quantitative cardiac perfusion <scp>MRI</scp> . Magnetic Resonance in Medicine, 2022, 88, 832-839.	3.0	2
4	Non-Invasive Imaging in Coronary Syndromes: Recommendations of The European Association of Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with The American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. Journal of the American Society of Echocardiography, 2022, 35, 329-354.	2.8	6
5	Multiparametric Cardiac Magnetic Resonance Imaging Detects Altered Myocardial Tissue and Function in Heart Transplantation Recipients Monitored for Cardiac Allograft Vasculopathy. Journal of Cardiovascular Imaging, 2022, 30, 263.	0.7	3
6	Validation of electrocardiographic criteria for identifying left ventricular dysfunction in patients with previous myocardial infarction. Annals of Noninvasive Electrocardiology, 2021, 26, e12812.	1.1	6
7	Cardiac safe hematopoietic stem cell transplantation for systemic sclerosis with poor cardiac function: a pilot safety study that decreases neutropenic interval to 5 days. Bone Marrow Transplantation, 2021, 56, 50-59.	2.4	25
8	Rapid reconstruction of highly undersampled, nonâ€Cartesian realâ€ŧime cine <i>k</i> â€space data using a perceptual complex neural network (PCNN). NMR in Biomedicine, 2021, 34, e4405.	2.8	16
9	A theoretical framework for retrospective correction to the arterial input function in quantitative myocardial perfusion MRI. Magnetic Resonance in Medicine, 2021, 86, 1137-1144.	3.0	2
10	ACR Appropriateness Criteria® Nonischemic Myocardial Disease with Clinical Manifestations (Ischemic) Tj ETQ	q0 0 0 rgB 1.8	T /gverlock 1
11	Identification of Cardiac Fibrosis in Young Adults With a Homozygous Frameshift Variant in <i>SERPINE1</i> . JAMA Cardiology, 2021, 6, 841.	6.1	8
12	Diabetes and Risk of Sudden Death in Coronary Artery Disease Patients Without Severe Systolic Dysfunction. JACC: Clinical Electrophysiology, 2021, 7, 1604-1614.	3.2	4
13	Accelerating compressed sensing reconstruction of subsampled radial k-space data using geometrically-derived density compensation. Physics in Medicine and Biology, 2021, 66, 21NT01.	3.0	2
14	Prostaglandin EP2 receptor antagonist ameliorates neuroinflammation in a two-hit mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2021, 18, 273.	7.2	2
15	Left ventricular extracellular volume expansion does not predict recurrence of atrial fibrillation following catheter ablation. PACE - Pacing and Clinical Electrophysiology, 2020, 43, 159-166.	1.2	2
16	Highly Accelerated Real-Time Free-Breathing Cine CMR for Patients With a Cardiac Implantable Electronic Device. Academic Radiology, 2020, 28, 1779-1786.	2.5	3
17	Left Ventricular Extracellular Volume Expansion Is Not Associated with Atrial Fibrillation or Atrial Fibrillation–mediated Left Ventricular Systolic Dysfunction. Radiology: Cardiothoracic Imaging, 2020, 2, e190096.	2.5	2
18	Accelerated Wideband Myocardial Perfusion Pulse Sequence with Compressed Sensing Reconstruction for Myocardial Blood Flow Quantification in Patients with a Cardiac Implantable Electronic Device. Radiology: Cardiothoracic Imaging, 2020, 2, e190114.	2.5	6

#	Article	IF	CITATIONS
19	Accelerated 3D Left Atrial Late Gadolinium Enhancement in Patients with Atrial Fibrillation at 1.5 T: Technical Development. Radiology: Cardiothoracic Imaging, 2020, 2, e200134.	2.5	5
20	Simple electrocardiographic measures improve sudden arrhythmic death prediction in coronary disease. European Heart Journal, 2020, 41, 1988-1999.	2.2	33
21	Post-hoc analysis of single nucleotide polymorphism profile for eyes with vascularized pigment epithelial detachment due to ARMD. European Journal of Ophthalmology, 2020, 31, 112067212093282.	1.3	1
22	Estimating Myocardial Infarction Size With a Simple Electrocardiographic Marker Score. Journal of the American Heart Association, 2020, 9, e014205.	3.7	17
23	Rapid dealiasing of undersampled, nonâ€Cartesian cardiac perfusion images using Uâ€net. NMR in Biomedicine, 2020, 33, e4239.	2.8	26
24	Prognostic Value of Myocardial Extracellular Volume Fraction and T2-mapping in Heart Transplant Patients. JACC: Cardiovascular Imaging, 2020, 13, 1521-1530.	5.3	29
25	Natural History of Myocardial Late Gadolinium Enhancement Predicts Adverse Clinical Events in Heart Transplant Recipients. JACC: Cardiovascular Imaging, 2019, 12, 2092-2094.	5.3	6
26	Prevalence and Prognosis of Unrecognized Myocardial Infarction in Asymptomatic Patients With Diabetes: A Two-Center Study With Up to 5 Years of Follow-up. Diabetes Care, 2019, 42, 1290-1296.	8.6	23
27	Getting to the heart of the matter: detecting and managing cardiac complications in systemic sclerosis. Annals of the Rheumatic Diseases, 2019, 78, 1452-1453.	0.9	4
28	Response to Comment on Elliott et al. Prevalence and Prognosis of Unrecognized Myocardial Infarction in Asymptomatic Patients With Diabetes: A Two-Center Study With Up to 5 Years of Follow-up. Diabetes Care 2019;42:1290–1296. Diabetes Care, 2019, 42, e156-e156.	8.6	0
29	Bacterial Colonization of the Hospitalized Newborn: Competition Between Staphylococcus aureus and Staphylococcus epidermidis. Pediatric Infectious Disease Journal, 2019, 38, 682-686.	2.0	15
30	Accelerated, firstâ€pass cardiac perfusion pulse sequence with radial kâ€space sampling, compressed sensing, and kâ€space weighted image contrast reconstruction tailored for visual analysis and quantification of myocardial blood flow. Magnetic Resonance in Medicine, 2019, 81, 2632-2643.	3.0	16
31	Wideband myocardial perfusion pulse sequence for imaging patients with a cardiac implantable electronic device. Magnetic Resonance in Medicine, 2019, 81, 1219-1228.	3.0	7
32	Sudden Death in Patients With Coronary Heart Disease Without Severe Systolic Dysfunction. JAMA Cardiology, 2018, 3, 591.	6.1	40
33	Validation of highly accelerated realâ€time cardiac cine MRI with radial kâ€space sampling and compressed sensing in patients at 1.5T and 3T. Magnetic Resonance in Medicine, 2018, 79, 2745-2751.	3.0	39
34	Diffuse cardiac fibrosis quantification in early systemic sclerosis by magnetic resonance imaging and correlation with skin fibrosis. Journal of Scleroderma and Related Disorders, 2018, 3, 159-169.	1.7	22
35	The growth and evolution of cardiovascular magnetic resonance: a 20-year history of the Society for Cardiovascular Magnetic Resonance (SCMR) annual scientific sessions. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 8.	3.3	12
36	Plasminogen Activator Inhibitor Type I Controls Cardiomyocyte Transforming Growth Factor-β and Cardiac Fibrosis. Circulation, 2017, 136, 664-679.	1.6	64

#	Article	IF	CITATIONS
37	An empirical method for reducing variability and complexity of myocardial perfusion quantification by dual bolus cardiac MRI. Magnetic Resonance in Medicine, 2017, 77, 2347-2355.	3.0	4
38	MerTK Cleavage on Resident Cardiac Macrophages Compromises Repair After Myocardial Ischemia Reperfusion Injury. Circulation Research, 2017, 121, 930-940.	4.5	144
39	Orthogonal decomposition of left ventricular remodeling in myocardial infarction. GigaScience, 2017, 6, 1-15.	6.4	12
40	The Kinetics of Circulating Monocyte Subsets and Monocyte-Platelet Aggregates in the Acute Phase of ST-Elevation Myocardial Infarction. Medicine (United States), 2016, 95, e3466.	1.0	41
41	Assessment of left and right atrial 3D hemodynamics in patients with atrial fibrillation: a 4D flow MRI study. International Journal of Cardiovascular Imaging, 2016, 32, 807-815.	1.5	33
42	Response to Letter Regarding Article, "Evaluating the Atrial Myopathy Underlying Atrial Fibrillation: Identifying the Arrhythmogenic and Thrombogenic Substrate― Circulation, 2016, 133, e431.	1.6	0
43	Left Atrial and Left Atrial Appendage 4D Blood Flow Dynamics in Atrial Fibrillation. Circulation: Cardiovascular Imaging, 2016, 9, e004984.	2.6	91
44	Optimized AIR and investigational MOLLI cardiac <i>T</i> ₁ mapping pulse sequences produce similar intraâ€scan repeatability in patients at 3T. NMR in Biomedicine, 2016, 29, 1454-1463.	2.8	7
45	LA velocities and stasis assessed by 4D flow MRI are closely associated with LAA peak velocities by Doppler TEE in patients with atrial fibrillation. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P1.	3.3	0
46	Three-dimensional left atrial blood flow characteristics in patients with atrial fibrillation assessed by 4D flow CMR. European Heart Journal Cardiovascular Imaging, 2016, 17, 1259-1268.	1.2	46
47	Left Atrial 4-Dimensional Flow Magnetic Resonance Imaging. Investigative Radiology, 2016, 51, 147-154.	6.2	65
48	Effects of Ranolazine on Exercise Capacity, Right Ventricular Indices, and Hemodynamic Characteristics in Pulmonary Arterial Hypertension: A Pilot Study. Pulmonary Circulation, 2015, 5, 547-556.	1.7	56
49	Information maximizing component analysis of left ventricular remodeling due to myocardial infarction. Journal of Translational Medicine, 2015, 13, 343.	4.4	20
50	Time elapsed after contrast injection is crucial to determine infarct transmurality and myocardial functional recovery after an acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 43.	3.3	22
51	A Comparison of Theory-Based and Experimentally Determined Myocardial Signal Intensity Correction Methods in First-Pass Perfusion Magnetic Resonance Imaging. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-9.	1.3	4
52	Stress perfusion cardiac MRI with regadenoson and gadofoveset trisodium. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P113.	3.3	0
53	The feasibility of imaging myocardial ischemic/reperfusion injury using 99mTc-labeled duramycin in a porcine model. Nuclear Medicine and Biology, 2015, 42, 198-204.	0.6	33
54	Evaluating the Atrial Myopathy Underlying Atrial Fibrillation. Circulation, 2015, 132, 278-291.	1.6	196

#	Article	IF	CITATIONS
55	Can Magnetic Spins Determine the CauseÂof an Electrical Storm?. JACC: Cardiovascular Imaging, 2015, 8, 424-426.	5.3	0
56	Assessment of left atrial and left atrial appendage flow and stasis in atrial fibrillation. Journal of Cardiovascular Magnetic Resonance, 2015, 17, M3.	3.3	6
57	Cardiac MR reliably identifies patients with clinically significant left ventricular noncompaction using a novel mass quantification technique. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P64.	3.3	0
58	Impact of cardiac arrhythmia on velocity quantification by ECG gated phase contrast MRI. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	3.3	0
59	Real time flow imaging in atrial fibrillation. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q25.	3.3	1
60	Cardiac MR feature tracking identifies abnormal biventricular global strain values in biopsy-proven non-ischemic cardiomyopathies. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q8.	3.3	0
61	Association of Nonmyeloablative Hematopoietic Stem Cell Transplantation With Neurological Disability in Patients With Relapsing-Remitting Multiple Sclerosis. JAMA - Journal of the American Medical Association, 2015, 313, 275.	7.4	164
62	Cardiomyocytes induce macrophage receptor shedding to suppress phagocytosis. Journal of Molecular and Cellular Cardiology, 2015, 87, 171-179.	1.9	27
63	Perfusion. , 2015, , 179-192.		0
64	Velocity Quantification by Electrocardiography-Gated Phase Contrast Magnetic Resonance Imaging in Patients With Cardiac Arrhythmia. Journal of Computer Assisted Tomography, 2015, 39, 1.	0.9	11
65	Atlas-Based Quantification of Cardiac Remodeling Due to Myocardial Infarction. PLoS ONE, 2014, 9, e110243.	2.5	65
66	Novel MRI-derived quantitative biomarker for cardiac function applied to classifying ischemic cardiomyopathy within a Bayesian rule learning framework. Proceedings of SPIE, 2014, 9034, .	0.8	5
67	Diastolic wall strain: a simple marker of abnormal cardiac mechanics. Cardiovascular Ultrasound, 2014, 12, 40.	1.6	14
68	A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Medical Image Analysis, 2014, 18, 50-62.	11.6	143
69	Prognostic Value of Microvascular Obstruction and Infarct Size, as MeasuredÂby CMR in STEMI Patients. JACC: Cardiovascular Imaging, 2014, 7, 930-939.	5.3	271
70	Probing Transmural Myocardial Perfusion With CMR. JACC: Cardiovascular Imaging, 2014, 7, 23-25.	5.3	5
71	Leakage and water exchange characterization of gadofosveset in the myocardium. Magnetic Resonance Imaging, 2014, 32, 224-235.	1.8	6
72	Continuous Spatio-temporal Atlases of the Asymptomatic and Infarcted Hearts. Lecture Notes in Computer Science, 2014, , 143-151.	1.3	4

#	Article	IF	CITATIONS
73	Abstract 14026: Atrial Fibrillation is Associated with Altered Left Atrial 3D Hemodynamics and Increased Stasis. Circulation, 2014, 130, .	1.6	2
74	Risk Assessment Following ST-segment Elevation Myocardial Infarction. Revista Espanola De Cardiologia (English Ed), 2013, 66, 603-605.	0.6	0
75	Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 80.	3.3	30
76	Evaluación del riesgo tras infarto de miocardio con elevación del segmento ST. Revista Espanola De Cardiologia, 2013, 66, 603-605.	1.2	9
77	CMR for Sudden Cardiac Death Risk Stratification. JACC: Cardiovascular Imaging, 2013, 6, 345-348.	5.3	25
78	Left atrial flow velocity distribution and flow coherence using fourâ€dimensional FLOW MRI: A pilot study investigating the impact of age and Pre―and Postintervention atrial fibrillation on atrial hemodynamics. Journal of Magnetic Resonance Imaging, 2013, 38, 580-587.	3.4	67
79	Absolute quantification of myocardial blood flow with constrained estimation of the arterial input function. Journal of Magnetic Resonance Imaging, 2013, 38, 603-609.	3.4	5
80	An Atlas for Cardiac MRI Regional Wall Motion and Infarct Scoring. Lecture Notes in Computer Science, 2013, , 188-197.	1.3	7
81	Intraventricular Dyssynchrony Assessment Using Regional Contraction from LV Motion Models. Lecture Notes in Computer Science, 2013, , 458-465.	1.3	1
82	A comparison of cardiac magnetic resonance imaging peri-infarct border zone quantification strategies for the prediction of ventricular tachyarrhythmia inducibility. Cardiology Journal, 2013, 20, 68-77.	1.2	20
83	Infarct healing is a dynamic process following acute myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 62.	3.3	51
84	Virtual Electrophysiological Study in a 3-Dimensional Cardiac Magnetic Resonance Imaging Model of Porcine Myocardial Infarction. Journal of the American College of Cardiology, 2012, 60, 423-430.	2.8	38
85	Personalized Medicine in Heart Failure. JACC: Cardiovascular Imaging, 2012, 5, 419-421.	5.3	7
86	Left Ventricular Segmentation Challenge from Cardiac MRI: A Collation Study. Lecture Notes in Computer Science, 2012, , 88-97.	1.3	26
87	Absolute Myocardial Blood Flow. JACC: Cardiovascular Imaging, 2011, 4, 999-1001.	5.3	6
88	Systemic sclerosis and the heart. Current Opinion in Rheumatology, 2011, 23, 545-554.	4.3	88
89	The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics, 2011, 27, 2288-2295.	4.1	232
90	Myocardial Perfusion Magnetic Resonance Imaging Using Sliding-Window Conjugate-Gradient HYPR Methods in Canine With Stenotic Coronary Arteries. Journal of Computer Assisted Tomography, 2010, 34, 684-688.	0.9	3

#	Article	IF	CITATIONS
91	Angiographic and Magnetic Resonance Imaging Evaluation of In-Hospital Delay in Primary Percutaneous Intervention Delivery on Myocardial Salvage. American Journal of Cardiology, 2010, 106, 924-930.	1.6	10
92	Determinants of Myocardial Salvage During Acute Myocardial Infarction. JACC: Cardiovascular Imaging, 2010, 3, 491-500.	5.3	52
93	The Cardiac Atlas Project: Rationale, Design and Procedures. Lecture Notes in Computer Science, 2010, , 36-45.	1.3	0
94	Effects of Posterior Tibial Tendon Augmented With Biografts and Calcaneal Osteotomy in Stage II Adult-Acquired Flatfoot Deformity. Foot and Ankle Specialist, 2009, 2, 27-31.	1.0	3
95	Quantification of Absolute Myocardial Blood Flow by Magnetic Resonance Perfusion Imaging. JACC: Cardiovascular Imaging, 2009, 2, 761-770.	5.3	69
96	Time-resolved myocardial perfusion MRI with reduced data acquisition window, improved spatial coverage, resolution and SNR. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
97	Sensitivity of resting magnetic resonance first-pass myocardial perfusion imaging for the detection of acute and chronic myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
98	Multi-stage diastolic function classification algorithm by cardiac MRI demonstrates the relationship between severity of diastolic dysfunction and acute infarct size. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
99	Acute Heart Failure Syndromes and Coronary Perfusion. Journal of the American College of Cardiology, 2008, 52, 13-16.	2.8	43
100	Correspondence Between the 17-Segment Model and Coronary Arterial Anatomy Using Contrast-Enhanced Cardiac Magnetic Resonance Imaging. JACC: Cardiovascular Imaging, 2008, 1, 282-293.	5.3	134
101	Abstract 1081: Correcting the Underestimation of Absolute Myocardial Blood Flow by Magnetic Resonance Perfusion Imaging. Circulation, 2008, 118, .	1.6	2
102	Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance imaging. European Heart Journal, 2007, 28, 1750-1758.	2.2	151
103	Thrombus organization and healing in the swine experimental aneurysm model. Part I. A histological and molecular analysis. Journal of Neurosurgery, 2007, 107, 94-108.	1.6	41
104	Granulocyte-colony stimulating factor administration after myocardial infarction in a porcine ischemia-reperfusion model: Functional and pathological effects of dose timing. Catheterization and Cardiovascular Interventions, 2007, 69, 257-266.	1.7	22
105	Quantitative assessment of regional left ventricular function with cardiac MRI: Threeâ€dimensional centersurface method. Catheterization and Cardiovascular Interventions, 2007, 69, 721-728.	1.7	19
106	Magnetic resonance approaches and recent advances in myocardial perfusion imaging. Current Cardiology Reports, 2006, 8, 59-64.	2.9	5
107	Contrast-Enhanced Cardiac Magnetic Resonance in the Evaluation of Myocardial Infarction and Myocardial Viability in Patients with Ischemic Heart Disease. Current Problems in Cardiology, 2006, 31, 128-168.	2.4	27
108	"Shades of Gray―in Cardiac Magnetic Resonance Images of Infarcted Myocardium. Circulation, 2006, 114, 8-10.	1.6	21

#	Article	IF	CITATIONS
109	Myosin-Binding Protein C Phosphorylation, Myofibril Structure, and Contractile Function During Low-Flow Ischemia. Circulation, 2005, 111, 906-912.	1.6	77
110	Magnetic Resonance Versus Radionuclide Pharmacological Stress Perfusion Imaging for Flow-Limiting Stenoses of Varying Severity. Circulation, 2004, 110, 58-65.	1.6	521