
Michael P Barrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2130046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The trypanosomiases. Lancet, The, 2003, 362, 1469-1480.	13.7	673
2	Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases, 2017, 11, e0006052.	3.0	571
3	Toward Global Metabolomics Analysis with Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry: Improved Metabolite Identification by Retention Time Prediction. Analytical Chemistry, 2011, 83, 8703-8710.	6.5	326
4	The animal trypanosomiases and their chemotherapy: a review. Parasitology, 2016, 143, 1862-1889.	1.5	308
5	IDEOM: an Excel interface for analysis of LC–MS-based metabolomics data. Bioinformatics, 2012, 28, 1048-1049.	4.1	307
6	Management of trypanosomiasis and leishmaniasis. British Medical Bulletin, 2012, 104, 175-196.	6.9	240
7	Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends in Parasitology, 2003, 19, 232-239.	3.3	208
8	Proline Metabolism in Procyclic Trypanosoma brucei Is Down-regulated in the Presence of Glucose. Journal of Biological Chemistry, 2005, 280, 11902-11910.	3.4	190
9	Mechanisms of Arsenical and Diamidine Uptake and Resistance in Trypanosoma brucei. Eukaryotic Cell, 2003, 2, 1003-1008.	3.4	186
10	Separation of parasites from human blood using deterministic lateral displacement. Lab on A Chip, 2011, 11, 1326.	6.0	180
11	A Molecular Mechanism for Eflornithine Resistance in African Trypanosomes. PLoS Pathogens, 2010, 6, e1001204.	4.7	155
12	Design and Synthesis of a Series of Melamine-based Nitroheterocycles with Activity against Trypanosomatid Parasites. Journal of Medicinal Chemistry, 2005, 48, 5570-5579.	6.4	153
13	MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Research, 2010, 38, W132-W137.	14.5	148
14	Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10996-11001.	7.1	134
15	Stable Isotope-Assisted Metabolomics for Network-Wide Metabolic Pathway Elucidation. Analytical Chemistry, 2012, 84, 8442-8447.	6.5	132
16	Probing the Metabolic Network in Bloodstream-Form Trypanosoma brucei Using Untargeted Metabolomics with Stable Isotope Labelled Glucose. PLoS Pathogens, 2015, 11, e1004689.	4.7	128
17	Precision mapping of the metabolome. Trends in Biotechnology, 2006, 24, 543-548.	9.3	125
18	Genetic characterization of glucose transporter function in Leishmania mexicana. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3901-3906.	7.1	124

#	Article	IF	CITATIONS
19	Drug resistance in human African trypanosomiasis. Future Microbiology, 2011, 6, 1037-1047.	2.0	121
20	Development of novel drugs for human African trypanosomiasis. Future Microbiology, 2011, 6, 677-691.	2.0	120
21	Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics, 2006, 2, 155-164.	3.0	117
22	BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 2014, 10, e1004263.	4.7	115
23	Glucose-induced Remodeling of Intermediary and Energy Metabolism in Procyclic Trypanosoma brucei. Journal of Biological Chemistry, 2008, 283, 16342-16354.	3.4	113
24	Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends in Parasitology, 2005, 21, 185-191.	3.3	112
25	Untargeted Metabolomics Reveals a Lack Of Synergy between Nifurtimox and Eflornithine against Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2012, 6, e1618.	3.0	101
26	Protozoan persister-like cells and drug treatment failure. Nature Reviews Microbiology, 2019, 17, 607-620.	28.6	97
27	mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics, 2013, 29, 281-283.	4.1	91
28	Benznidazole Biotransformation and Multiple Targets in Trypanosoma cruzi Revealed by Metabolomics. PLoS Neglected Tropical Diseases, 2014, 8, e2844.	3.0	90
29	New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. Lancet Infectious Diseases, The, 2020, 20, e38-e46.	9.1	90
30	Metabolomics Guides Rational Development of a Simplified Cell Culture Medium for Drug Screening against Trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 2013, 57, 2768-2779.	3.2	88
31	New surveyor tools for charting microbial metabolic maps. Nature Reviews Microbiology, 2008, 6, 156-161.	28.6	83
32	New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Tropical Medicine and Infectious Disease, 2020, 5, 29.	2.3	83
33	Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments. PLoS Pathogens, 2016, 12, e1006094.	4.7	82
34	Untargeted Metabolomics To Ascertain Antibiotic Modes of Action. Antimicrobial Agents and Chemotherapy, 2016, 60, 2281-2291.	3.2	78
35	Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infectious Diseases, 2019, 5, 152-157.	3.8	78
36	The rise and fall of sleeping sickness. Lancet, The, 2006, 367, 1377-1378.	13.7	75

#	Article	IF	CITATIONS
37	Metabolomics Identifies Multiple Candidate Biomarkers to Diagnose and Stage Human African Trypanosomiasis. PLoS Neglected Tropical Diseases, 2016, 10, e0005140.	3.0	74
38	Minor groove binders as anti-infective agents. , 2013, 139, 12-23.		73
39	Uptake and mode of action of drugs used against sleeping sickness. Biochemical Pharmacology, 2001, 61, 1-5.	4.4	72
40	Pentose phosphate metabolism in Leishmania mexicana. Molecular and Biochemical Parasitology, 2003, 130, 117-125.	1.1	72
41	Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites. PLoS Pathogens, 2015, 11, e1004882.	4.7	67
42	Trypanosome glucose transporters. Molecular and Biochemical Parasitology, 1998, 91, 195-205.	1.1	62
43	The Pentose Phosphate Pathway in Parasitic Trypanosomatids. Trends in Parasitology, 2016, 32, 622-634.	3.3	62
44	Diamidines for human African trypanosomiasis. Current Opinion in Investigational Drugs, 2010, 11, 876-83.	2.3	61
45	Semiâ€ŧargeted analysis of metabolites using capillaryâ€flow ion chromatography coupled to highâ€resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3447-3452.	1.5	59
46	In Vivo Imaging of Trypanosome-Brain Interactions and Development of a Rapid Screening Test for Drugs against CNS Stage Trypanosomiasis. PLoS Neglected Tropical Diseases, 2013, 7, e2384.	3.0	59
47	A 2.8 Ã resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei : comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues 1 1Edited by R. Huber. Journal of Molecular Biology, 1998, 282, 667-681.	4.2	58
48	The threonine degradation pathway of the <i><scp>T</scp>rypanosoma brucei</i> procyclic form: the main carbon source for lipid biosynthesis is under metabolic control. Molecular Microbiology, 2013, 90, 114-129.	2.5	58
49	Functional expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity for diminazene uptake. International Journal for Parasitology: Drugs and Drug Resistance, 2013, 3, 69-76.	3.4	57
50	Activity of Megazol, a Trypanocidal Nitroimidazole, Is Associated with DNA Damage. Antimicrobial Agents and Chemotherapy, 2003, 47, 3368-3370.	3.2	54
51	Roles for theTrypanosoma bruceiP2 Transporter in DB75 Uptake and Resistance. Molecular Pharmacology, 2006, 70, 1585-1592.	2.3	54
52	Metabolomic analysis of trypanosomatid protozoa. Molecular and Biochemical Parasitology, 2012, 181, 73-84.	1.1	54
53	The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathogens, 2018, 14, e1007315.	4.7	53
54	Targeting of Toxic Compounds to the Trypanosome's Interior. Advances in Parasitology, 2006, 63, 125-183.	3.2	52

#	Article	IF	CITATIONS
55	Potential new drugs for human African trypanosomiasis: some progress at last. Current Opinion in Infectious Diseases, 2010, 23, 603-608.	3.1	51
56	Melarsoprol Cyclodextrin Inclusion Complexes as Promising Oral Candidates for the Treatment of Human African Trypanosomiasis. PLoS Neglected Tropical Diseases, 2011, 5, e1308.	3.0	51
57	Rareâ€Cell Enrichment by a Rapid, Labelâ€Free, Ultrasonic Isopycnic Technique for Medical Diagnostics. Angewandte Chemie - International Edition, 2014, 53, 5587-5590.	13.8	51
58	Pathos: A web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3422-3426.	1.5	49
59	Trypanocidal Furamidine Analogues: Influence of Pyridine Nitrogens on Trypanocidal Activity, Transport Kinetics, and Resistance Patterns. Antimicrobial Agents and Chemotherapy, 2011, 55, 2352-2361.	3.2	49
60	Perspectives for New Drugs Against Trypanosomiasis and Leishmaniasis. Current Topics in Medicinal Chemistry, 2002, 2, 471-482.	2.1	48
61	A Trypanosoma brucei Kinesin Heavy Chain Promotes Parasite Growth by Triggering Host Arginase Activity. PLoS Pathogens, 2013, 9, e1003731.	4.7	48
62	Transketolase from Leishmania mexicana has a dual subcellular localization. Biochemical Journal, 2004, 382, 759-767.	3.7	47
63	Determination of antiprotozoal drug mechanisms by metabolomics approaches. Parasitology, 2014, 141, 83-92.	1.5	47
64	Detection of arsenical drug resistance in Trypanosoma brucei with a simple fluorescence test. Lancet, The, 2005, 366, 486-487.	13.7	46
65	Metabolomic-Based Strategies for Anti-Parasite Drug Discovery. Journal of Biomolecular Screening, 2015, 20, 44-55.	2.6	46
66	The elimination of human African trypanosomiasis is in sight: Report from the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Neglected Tropical Diseases, 2018, 12, e0006925.	3.0	45
67	Targeting the trypanosome kinetochore with CLK1 protein kinase inhibitors. Nature Microbiology, 2020, 5, 1207-1216.	13.3	45
68	6-Phosphogluconate Dehydrogenase from Trypanosoma Brucei. Kinetic Analysis and Inhibition by Trypanocidal Drugs. FEBS Journal, 1996, 240, 592-599.	0.2	44
69	Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana. PLoS Neglected Tropical Diseases, 2017, 11, e0005649.	3.0	43
70	Handling Uncertainty in Dynamic Models: The Pentose Phosphate Pathway in Trypanosoma brucei. PLoS Computational Biology, 2013, 9, e1003371.	3.2	40
71	Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9112-9117.	7.1	39
72	Genomic instability at the locus of sterol C24-methyltransferase promotes amphotericin B resistance in Leishmania parasites. PLoS Neglected Tropical Diseases, 2019, 13, e0007052.	3.0	39

#	Article	IF	CITATIONS
73	Multiple roles of proline transport and metabolism in trypanosomatids. Frontiers in Bioscience - Landmark, 2012, 17, 349.	3.0	38
74	The Diamidine Diminazene Aceturate Is a Substrate for the High-Affinity Pentamidine Transporter: Implications for the Development of High Resistance Levels in Trypanosomes. Molecular Pharmacology, 2011, 80, 110-116.	2.3	37
75	LC–MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics, 2015, 11, 1721-1732.	3.0	36
76	TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research, 2015, 43, D637-D644.	14.5	35
77	Metabolomic profiling of macrophages determines the discrete metabolomic signature and metabolomic interactome triggered by polarising immune stimuli. PLoS ONE, 2018, 13, e0194126.	2.5	35
78	Selective Inhibition of Trypanosoma brucei 6-Phosphogluconate Dehydrogenase by High-Energy Intermediate and Transition-State Analogues. Journal of Medicinal Chemistry, 2004, 47, 3427-3437.	6.4	33
79	Synthesis and inâ€vitro/inâ€vivo Evaluation of the Antitrypanosomal Activity of 3â€Bromoacivicin, a Potent CTP Synthetase Inhibitor. ChemMedChem, 2011, 6, 329-333.	3.2	33
80	Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2018, 12, e0006450.	3.0	33
81	Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 206-226.	3.4	32
82	Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathogens, 2018, 14, e1007475.	4.7	32
83	Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. Journal of Biological Chemistry, 2020, 295, 8331-8347.	3.4	32
84	Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biology, 2020, 18, e3000741.	5.6	32
85	Intravital Imaging of a Massive Lymphocyte Response in the Cortical Dura of Mice after Peripheral Infection by Trypanosomes. PLoS Neglected Tropical Diseases, 2015, 9, e0003714.	3.0	31
86	Complex Interplay between Sphingolipid and Sterol Metabolism Revealed by Perturbations to the Leishmania Metabolome Caused by Miltefosine. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	31
87	A 6-phosphogluconate dehydrogenase gene from Trypanosoma brucei. Molecular and Biochemical Parasitology, 1993, 57, 89-99.	1.1	30
88	Multiple Genetic Mechanisms Lead to Loss of Functional TbAT1 Expression in Drug-Resistant Trypanosomes. Eukaryotic Cell, 2010, 9, 336-343.	3.4	30
89	Urinary antihypertensive drug metabolite screening using molecular networking coupled to high-resolution mass spectrometry fragmentation. Metabolomics, 2016, 12, 125.	3.0	30
90	Use of reconstituted metabolic networks to assist in metabolomic data visualization and mining. Metabolomics, 2010, 6, 312-321.	3.0	29

#	Article	IF	CITATIONS
91	Synthesis and Biological Evaluation of CTP Synthetase Inhibitors as Potential Agents for the Treatment of African Trypanosomiasis. ChemMedChem, 2012, 7, 1623-1634.	3.2	29
92	Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism. PLoS Computational Biology, 2012, 8, e1002352.	3.2	28
93	6-Phosphogluconate dehydrogenase from Lactococcus lactis: a role for arginine residues in binding substrate and coenzyme. Biochemical Journal, 1999, 338, 55-60.	3.7	27
94	Uptake of the nitroimidazole drug megazol by African trypanosomes. Biochemical Pharmacology, 2000, 59, 615-620.	4.4	27
95	Synthesis and biological evaluation of substrate-Based inhibitors of 6-phosphogluconate dehydrogenase as potential drugs against African Trypanosomiasis. Bioorganic and Medicinal Chemistry, 2003, 11, 3205-3214.	3.0	27
96	Synthesis and Biological Evaluation of Phosphate Prodrugs of 4â€Phosphoâ€ <scp>D</scp> â€erythronohydroxamic Acid, an Inhibitor of 6â€Phosphogluconate Dehydrogenase. ChemMedChem, 2007, 2, 1169-1180.	3.2	27
97	Virtual fragment screening for novel inhibitors of 6-phosphogluconate dehydrogenase. Bioorganic and Medicinal Chemistry, 2010, 18, 5056-5062.	3.0	26
98	Crystal Structure of an Arginase-like Protein from <i>Trypanosoma brucei</i> That Evolved without a Binuclear Manganese Cluster. Biochemistry, 2015, 54, 458-471.	2.5	26
99	Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathogens, 2018, 14, e1006850.	4.7	26
100	The silicon trypanosome. Parasitology, 2010, 137, 1333-1341.	1.5	25
101	Emerging paradigms in anti-infective drug design. Parasitology, 2014, 141, 1-7.	1.5	24
102	Potent Trypanocidal Curcumin Analogs Bearing a Monoenone Linker Motif Act on <i>Trypanosoma brucei</i> by Forming an Adduct with Trypanothione. Molecular Pharmacology, 2015, 87, 451-464.	2.3	24
103	Transketolase in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2011, 179, 1-7.	1.1	23
104	Counterflow Dielectrophoresis for Trypanosome Enrichment and Detection in Blood. Scientific Reports, 2012, 2, 775.	3.3	23
105	Metabolomic systems biology of trypanosomes. Parasitology, 2010, 137, 1285-1290.	1.5	19
106	Transport of methionine in Trypanosoma brucei brucei. Molecular and Biochemical Parasitology, 2000, 111, 299-307.	1.1	18
107	Novel Minor Groove Binders Cure Animal African Trypanosomiasis in an in Vivo Mouse Model. Journal of Medicinal Chemistry, 2019, 62, 3021-3035.	6.4	18
108	Experimentally Engineered Mutations in a Ubiquitin Hydrolase, UBP-1, Modulate <i>In Vivo</i> Susceptibility to Artemisinin and Chloroquine in Plasmodium berghei. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	18

#	Article	IF	CITATIONS
109	Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana. PLoS Pathogens, 2018, 14, e1006953.	4.7	18
110	Shapeâ€Dependent Optoelectronic Cell Lysis. Angewandte Chemie - International Edition, 2014, 53, 842-846.	13.8	17
111	Mapping the metabolism of five amino acids in bloodstream form <i>Trypanosoma brucei</i> using U-13C-labelled substrates and LC–MS. Bioscience Reports, 2019, 39, .	2.4	17
112	Pharma to farmer: field challenges of optimizing trypanocide use in African animal trypanosomiasis. Trends in Parasitology, 2021, 37, 831-843.	3.3	17
113	McArthur revisited: fluorescence microscopes for field diagnostics. Trends in Parasitology, 2007, 23, 468-469.	3.3	16
114	Genotypic Status of the TbAT1/P2 Adenosine Transporter of Trypanosoma brucei gambiense Isolates from Northwestern Uganda following Melarsoprol Withdrawal. PLoS Neglected Tropical Diseases, 2009, 3, e523.	3.0	16
115	Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline. PLoS Pathogens, 2021, 17, e1009204.	4.7	16
116	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. PLoS Pathogens, 2020, 16, e1008932.	4.7	16
117	An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. PLoS Pathogens, 2015, 11, e1004875.	4.7	15
118	Metabolic Clustering Analysis as a Strategy for Compound Selection in the Drug Discovery Pipeline for Leishmaniasis. ACS Chemical Biology, 2018, 13, 1361-1369.	3.4	15
119	Antileishmanial Chemotherapy through Clemastine Fumarate Mediated Inhibition of the <i>Leishmania</i> Inositol Phosphorylceramide Synthase. ACS Infectious Diseases, 2021, 7, 47-63.	3.8	15
120	Explicit consideration of topological and parameter uncertainty gives new insights into a wellâ€established model of glycolysis. FEBS Journal, 2013, 280, 4640-4651.	4.7	15
121	A monolithic single-chip point-of-care platform for metabolomic prostate cancer detection. Microsystems and Nanoengineering, 2021, 7, 21.	7.0	14
122	Diminazene resistance in <i>Trypanosoma congolense</i> is not caused by reduced transport capacity but associated with reduced mitochondrial membrane potential. Molecular Microbiology, 2021, 116, 564-588.	2.5	14
123	Evaluation of Antigens for Development of a Serological Test for Human African Trypanosomiasis. PLoS ONE, 2016, 11, e0168074.	2.5	12
124	An integrated portable system for single chip simultaneous measurement of multiple disease associated metabolites. Biosensors and Bioelectronics, 2018, 122, 88-94.	10.1	12
125	Rareâ€Cell Enrichment by a Rapid, Labelâ€Free, Ultrasonic Isopycnic Technique for Medical Diagnostics. Angewandte Chemie, 2014, 126, 5693-5696.	2.0	11
126	Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Pathogens, 2021, 17, e1009734.	4.7	11

#	Article	IF	CITATIONS
127	The Knock-Down of the Chloroquine Resistance Transporter PfCRT Is Linked to Oligopeptide Handling in Plasmodium falciparum. Microbiology Spectrum, 2022, 10, .	3.0	11
128	Polymorphism among alleles of the 6-Phosphogluconate dehydrogenase gene from Leishmania major and Leishmania tropica. Molecular and Biochemical Parasitology, 2002, 125, 185-188.	1.1	10
129	Trypanosoma brucei: meet the system. Current Opinion in Microbiology, 2014, 20, 162-169.	5.1	10
130	Untargeted metabolomics to understand the basis of phenotypic differences in amphotericin B-resistant Leishmania parasites. Wellcome Open Research, 2019, 4, 176.	1.8	10
131	A new erythrose 4-phosphate dehydrogenase coupled assay for transketolase. Journal of Proteomics, 2008, 70, 1185-1187.	2.4	9
132	Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes. International Journal for Parasitology, 2021, 51, 441-453.	3.1	9
133	The 6-Phosphogluconate Dehydrogenase of Leishmania (Leishmania) mexicana: Gene Characterization and Protein Structure Prediction. Journal of Molecular Microbiology and Biotechnology, 2010, 19, 213-223.	1.0	8
134	Bestatin Induces Specific Changes in Trypanosoma cruzi Dipeptide Pool. Antimicrobial Agents and Chemotherapy, 2015, 59, 2921-2925.	3.2	8
135	Anti-Trypanosomal Proteasome Inhibitors Cure Hemolymphatic and Meningoencephalic Murine Infection Models of African Trypanosomiasis. Tropical Medicine and Infectious Disease, 2020, 5, 28.	2.3	8
136	Mammalian Deubiquitinating Enzyme Inhibitors Display <i>in Vitro</i> and <i>in Vivo</i> Activity against Malaria Parasites and Potentiate Artemisinin Action. ACS Infectious Diseases, 2021, 7, 333-346.	3.8	8
137	The structure-function relationship of functionally distinct but structurally similar hexose transporters from Trypanosoma congolense. FEBS Journal, 2000, 267, 4850-4860.	0.2	7
138	Running on Empty: A Metabolomics Approach to Investigating Changing Energy Metabolism during Fasted Exercise and Rest. Metabolites, 2020, 10, 399.	2.9	7
139	Microfluidics-Based Approaches to the Isolation of African Trypanosomes. Pathogens, 2017, 6, 47.	2.8	6
140	Halogenated tryptophan derivatives disrupt essential transamination mechanisms in bloodstream form Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2020, 14, e0008928.	3.0	6
141	The Silicon Trypanosome. Advances in Microbial Physiology, 2014, 64, 115-143.	2.4	5
142	Antileishmanial and antitrypanosomal drug identification. Emerging Topics in Life Sciences, 2017, 1, 613-620.	2.6	5
143	Hypervariability in Gene Copy Number for the Glucose Transporter Genes in Trypanosomes. Journal of Eukaryotic Microbiology, 1996, 43, 244-249.	1.7	4
144	Advances in Understanding and Treatment of Human African Trypanosomiasis: Divergent Diseases Caused by Distinct Parasites. , 2014, , 901-917.		4

9

#	Article	IF	CITATIONS
145	In Vivo Bioluminescence Imaging to Assess Compound Efficacy Against Trypanosoma brucei. Methods in Molecular Biology, 2020, 2116, 801-817.	0.9	3
146	Characterization of a Melamino Nitroheterocycle as a Potential Lead for the Treatment of Human African Trypanosomiasis. Antimicrobial Agents and Chemotherapy, 2014, 58, 5747-5757.	3.2	2
147	Small Polar Hits against <i>S. aureus</i> : Screening, Initial Hit Optimization, and Metabolomic Studies. ACS Omega, 2019, 4, 19199-19215.	3.5	2
148	Truncated S-MGBs: towards a parasite-specific and low aggregation chemotype. RSC Medicinal Chemistry, 2021, 12, 1391-1401.	3.9	2
149	Transcriptional differentiation of Trypanosoma brucei during in vitro acquisition of resistance to acoziborole. PLoS Neglected Tropical Diseases, 2021, 15, e0009939.	3.0	2
150	Emerging therapeutic targets in parasitic protozoa. Expert Opinion on Therapeutic Targets, 1998, 2, 57-85.	1.0	1
151	Inside Doctor Livingstone: a Scottish icon's encounter with tropical disease. Parasitology, 2017, 144, 1652-1662.	1.5	1
152	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. , 2020, 16, e1008932.		0
153	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. , 2020, 16, e1008932.		0
154	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. , 2020, 16, e1008932.		0
155	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. , 2020, 16, e1008932.		0