
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2129789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules. IEEE Transactions on Electron Devices, 1998, 45, 423-429.	3.0	194
2	Polycrystalline silicon films obtained by hot-wire chemical vapour deposition. Applied Physics A: Solids and Surfaces, 1994, 59, 645-651.	1.4	85
3	PEN as substrate for new solar cell technologies. Solar Energy Materials and Solar Cells, 2005, 89, 37-47.	6.2	66
4	New features of the layerâ€byâ€layer deposition of microcrystalline silicon films revealed by spectroscopic ellipsometry and high resolution transmission electron microscopy. Applied Physics Letters, 1996, 69, 529-531.	3.3	49
5	Stability of hydrogenated nanocrystalline silicon thin-film transistors. Thin Solid Films, 2001, 395, 335-338.	1.8	29
6	Micro- and nanostructuring of poly(ethylene-2,6-naphthalate) surfaces, for biomedical applications, using polymer replication techniques. Nanotechnology, 2005, 16, 369-375.	2.6	27
7	Top-gate microcrystalline silicon TFTs processed at low temperature (<200 °C). Thin Solid Films, 2005, 487, 227-231.	1.8	26
8	Studies on grain boundaries in nanocrystalline silicon grown by hot-wire CVD. Journal of Non-Crystalline Solids, 2002, 299-302, 14-19.	3.1	23
9	Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by Hot-Wire CVD on glass substrate. Thin Solid Films, 2006, 501, 303-306.	1.8	23
10	Analysis of bias stress on thin-film transistors obtained by Hot-Wire Chemical Vapour Deposition. Thin Solid Films, 2001, 383, 307-309.	1.8	22
11	Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV. Thin Solid Films, 2006, 511-512, 415-419.	1.8	21
12	Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films. Thin Solid Films, 2003, 430, 270-273.	1.8	19
13	Low level optical absorption measurements on organic semiconductors. Journal of Non-Crystalline Solids, 2006, 352, 1663-1667.	3.1	17
14	Electronic properties of intrinsic and doped amorphous silicon carbide films. Thin Solid Films, 2006, 511-512, 290-294.	1.8	16
15	P-doped polycrystalline silicon films obtained at low temperature by hot-wire chemical vapor deposition. Applied Surface Science, 1995, 86, 600-603.	6.1	15
16	Microcrystalline silicon thin film transistors obtained by hot-wire CVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 526-529.	3.5	15
17	Photodiodes based on fullerene semiconductor. Thin Solid Films, 2007, 515, 7675-7678.	1.8	14
18	Progress in a-Si:H/c-Si heterojunction emitters obtained by Hot-Wire CVD at 200°C. Thin Solid Films, 2008, 516, 761-764.	1.8	12

#	Article	IF	CITATIONS
19	Filament discharge plasma of argon with electrostatic confinement. Journal Physics D: Applied Physics, 1985, 18, 1339-1345.	2.8	11
20	Equilibrium and nonequilibrium gap-state distribution in amorphous silicon. Physical Review B, 1993, 47, 13295-13303.	3.2	11
21	Kelvin probe measurements of microcrystalline silicon on a nanometer scale using SFM. Solar Energy Materials and Solar Cells, 2001, 66, 171-177.	6.2	11
22	Spectral analysis of the angular distribution function of back reflectors for thin film silicon solar cells. Journal of Non-Crystalline Solids, 2006, 352, 1896-1899.	3.1	11
23	Progress in single junction microcrystalline silicon solar cells deposited by Hot-Wire CVD. Thin Solid Films, 2006, 501, 247-251.	1.8	11
24	New techniques for laser microprocessing of photovoltaic devices based on thin-film a-Si:H. Applied Surface Science, 2007, 254, 1115-1120.	6.1	11
25	Nanocrystalline silicon thin films on PEN substrates. Thin Solid Films, 2008, 516, 584-587.	1.8	10
26	Hydrogen related effects in a-Si:H studied by photothermal deflection spectroscopy. Physica B: Condensed Matter, 1991, 170, 269-272.	2.7	9
27	Structure of a-Si: H/a-Si1â^'xCx: H multilayers deposited in a reactor with automated substrate holder. Vacuum, 1993, 44, 129-134.	3.5	8
28	Deposition of Polysilicon Films by Hot-Wire CVD at Low Temperatures for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 1995, 377, 63.	0.1	8
29	Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD. Journal of Non-Crystalline Solids, 2002, 299-302, 400-404.	3.1	8
30	Characterization of intrinsic and doped amorphous silicon through thermal hydrogen effusion. Solar Energy Materials and Solar Cells, 1988, 17, 227-234.	0.4	6
31	Hydrogen content, transport properties and light degradation of a-Si:H films containing artificially generated interfaces. Solar Energy Materials and Solar Cells, 1988, 17, 1-16.	0.4	6
32	Distribution of electron energy in an electrostatically confined silane plasma. Journal of Applied Physics, 1988, 63, 1230-1232.	2.5	6
33	Microdoping compensation of microcrystalline silicon obtained by hot-wire chemical vapour deposition. Solar Energy Materials and Solar Cells, 2000, 63, 237-246.	6.2	6
34	Investigations on doping of amorphous and nanocrystalline silicon films deposited by catalytic chemical vapour deposition. Thin Solid Films, 2001, 395, 125-129.	1.8	6
35	Optical analysis of textured plastic substrates to be used in thin silicon solar cells. Solar Energy Materials and Solar Cells, 2005, 87, 333-341.	6.2	6
36	Characterization of bifacial heterojunction silicon solar cells obtained by hot-wire CVD. Journal of Non-Crystalline Solids, 2006, 352, 1953-1957.	3.1	5

#	Article	IF	CITATIONS
37	Low temperature back-surface-field contacts deposited by hot-wire CVD for heterojunction solar cells. Thin Solid Films, 2008, 516, 6782-6785.	1.8	5
38	Aluminium induced texturing of glass substrates with improved light management for thin film solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 276-280.	6.2	5
39	Influence of the technological parameters on the growth of a-Si:H by a low pressure d.c. plasma process. Thin Solid Films, 1990, 191, 283-295.	1.8	4
40	Structural characterization of a-SiC:H by thermal desorption spectroscopy. Applied Surface Science, 1993, 70-71, 768-771.	6.1	4
41	Investigation of defect formation and electronic transport in microcrystalline silicon deposited by hot-wire CVD. Physica B: Condensed Matter, 1999, 273-274, 540-543.	2.7	4
42	Thin silicon films ranging from amorphous to nanocrystalline obtained by hot-wire CVD. Thin Solid Films, 2001, 383, 189-191.	1.8	4
43	Substrate influence on the properties of doped thin silicon layers grown by Cat-CVD. Thin Solid Films, 2003, 430, 157-160.	1.8	4
44	Hot Embossing of Polymer Substrates for Thin Silicon Cell Applications. , 2006, , .		4
45	Electrostatic confinement effects on a hot cathode DC glow discharge in silane. Journal Physics D: Applied Physics, 1987, 20, 1479-1483.	2.8	3
46	Glow discharge deposited a-Si:H,Al thin films. Solar Energy Materials and Solar Cells, 1987, 15, 167-173.	0.4	3
47	Stress in Hydrogenated Microcrystalline Silicon Thin Films. Materials Research Society Symposia Proceedings, 1999, 557, 537.	0.1	3
48	Optical stability of small-molecule thin-films determined by Photothermal Deflection Spectroscopy. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	3
49	Hydrogenated amorphous silicon films obtained by a low pressure dc glow discharge. Applied Physics A: Solids and Surfaces, 1988, 46, 207-213.	1.4	2
50	Light-induced defects in thermal annealed hydrogenated amorphous silicon. Solar Energy Materials and Solar Cells, 1992, 28, 49-57.	6.2	2
51	Structure of microcrystalline silicon films deposited at very low temperatures by hot-wire CVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 536-541.	3.5	2
52	Shutterless deposition of phosphorous doped microcrystalline silicon by Cat-CVD. Thin Solid Films, 2003, 430, 145-148.	1.8	2
53	Comparison of (n+) a-Si:H /(p) c-Si Heterojunction Emitters using a-Si:H Films Deposited by PECVD or HWCVD. , 2006, , .		2
54	Effect of the base pressure achieved prior deposition on the main properties of ZnO:Al films obtained by DC magnetron sputtering at room temperature for electrical contact use. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	2

#	Article	lF	CITATIONS
55	On the determination of the interface density of states in aî—,Si:H/aî—,Si1â^'XCX:H multilayers. Journal of Non-Crystalline Solids, 1993, 164-166, 861-864.	3.1	1
56	Carrier Injection in a-Si:H P-I-N Devices: Hydrogen Redistribution and Defect Creation. Materials Research Society Symposia Proceedings, 1993, 297, 315.	0.1	1
57	Influence of Substrate Temperature on the Properties of A-Si:H P-Layers Obtained from Trimethylboron. Materials Research Society Symposia Proceedings, 1994, 336, 565.	0.1	1
58	Optoelectronic studies in nanocrystalline silicon Schottky diodes obtained by hot-wire CVD. Thin Solid Films, 2001, 383, 258-260.	1.8	1
59	Control of doped layers in p–i–n microcrystalline solar cells fully deposited with HWCVD. Journal of Non-Crystalline Solids, 2004, 338-340, 659-662.	3.1	1
60	Characterization of UV laser ablation for microprocessing of a-Si:H thin films. , 2006, , .		1
61	Optical and Morphological Characterization of PTCDI-C13. Materials Research Society Symposia Proceedings, 2008, 1091, 1.	0.1	1
62	Deposition of amorphous silicon films from an electrostatically confined silane plasma. Vacuum, 1987, 37, 443-444.	3.5	0
63	Persistent photoconductivity in undoped a-Si:H/a-SiC:H multilayers. Thin Solid Films, 1993, 228, 165-168.	1.8	0
64	Fast Degradation with Pulsed Light of a-Si:H P-I-N Photodiodes. Materials Research Society Symposia Proceedings, 1993, 297, 613.	0.1	0
65	Parallel Conduction in a-Si:H/a-Si1â^'xCx:H Multilayers. Materials Research Society Symposia Proceedings, 1993, 297, 699.	0.1	0
66	Collection asymmetry in a drift-driven p–i–n solar cell. Journal of Non-Crystalline Solids, 2002, 299-302, 1142-1146.	3.1	0
67	Cyclically Varying Hydrogen Dilution for the Growth of Very Thin and Doped Nanocrystalline Silicon Films by Hot-Wire CVD. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	0
68	New developments in the fabrication of amorphous silicon photovoltaic modules on very large 2.60 m × 2.20 m glass. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1101-1104.	0.8	0
69	Properties of a-Si:H/a-Si:H Interfaces Generated by Plasma Switching. , 1987, , 555-559.		0
70	Characterization of Amorphous Silicon Films through Infrared Spectroscopy and Hydrogen Thermal Effusion. , 1987, , 577-581.		0
71	Low Temperature Short Time Response of Light Induced Defects in a-Si:H. , 1991, , 343-345.		0