Scott R Goode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using a Case Study to Teach Hazard Analysis and Risk Minimization. Journal of Chemical Education, 2021, 98, 183-185.	2.3	5
2	Introducing the Journal of Chemical Education's Special Issue on Chemical Safety Education: Methods, Culture, and Green Chemistry. Journal of Chemical Education, 2021, 98, 1-6.	2.3	10
3	Highlights: Safety Blogs, Alane Reduction, Postlockdown Process Safety Concerns, and More. Journal of Chemical Health and Safety, 2021, 28, 10-13.	2.1	0
4	Planning and Building Laboratories: A Collaboration among Many. Journal of Chemical Health and Safety, 2021, 28, 38-48.	2.1	4
5	Journal of Chemical Education Call for Papers—Special Issue on Chemical Safety Education: Methods, Culture, and Green Chemistry. Journal of Chemical Education, 2019, 96, 1055-1057.	2.3	5
6	Determining a Solubility Product Constant by Potentiometric Titration To Increase Students' Conceptual Understanding of Potentiometry and Titrations. Journal of Chemical Education, 2017, 94, 636-639.	2.3	9
7	Review and analysis of safety policies of chemical journals. Journal of Chemical Health and Safety, 2016, 23, 30-35.	2.1	11
8	Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy. Journal of Chemical Education, 2008, 85, 854.	2.3	6
9	Speciation of Chromium via Laser-Induced Breakdown Spectroscopy of Ion Exchange Polymer Membranes. Applied Spectroscopy, 2005, 59, 252-257.	2.2	53
10	UV laser pyrolysis fast gas chromatography/time-of-flight mass spectrometry for rapid characterization of synthetic polymers: optimization of instrumental parameters. Journal of Analytical and Applied Pyrolysis, 2004, 71, 327-341.	5.5	22
11	UV laser pyrolysis fast gas chromatography/time-of-flight mass spectrometry for rapid characterization of synthetic polymers: instrument development. Journal of Analytical and Applied Pyrolysis, 2004, 71, 313-325.	5.5	15
12	Emission Spectroscopy in the Undergraduate Laboratory. Journal of Chemical Education, 2003, 80, 1455.	2.3	15
13	Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Applied Optics, 2003, 42, 6099.	2.1	112
14	Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter. Applied Optics, 2003, 42, 6153.	2.1	54
15	Analysis of Aqueous Solutions by Laser-Induced Breakdown Spectroscopy of Ion Exchange Membranes. Applied Spectroscopy, 2002, 56, 370-374.	2.2	82
16	Some Comparisons of LIBS Measurements Using Nanosecond and Picosecond Laser Pulses. Applied Spectroscopy, 2001, 55, 279-285.	2.2	80
17	Energy Dependence of Emission Intensity and Temperature in a LIBS Plasma Using Femtosecond Excitation. Applied Spectroscopy, 2001, 55, 286-291.	2.2	106
18	Influence of the Isotopic Composition of Standards on the Accuracy of Atomic Spectrometry for the Determination of Lithium. Applied Spectroscopy, 2001, 55, 1225-1228.	2.2	2

SCOTT R GOODE

#	Article	IF	CITATIONS
19	Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer. Journal of Analytical Atomic Spectrometry, 2000, 15, 1133-1138.	3.0	57
20	In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Probe. Analytical Chemistry, 1996, 68, 977-981.	6.5	119
21	Measuring the spatial distribution of properties and species in microwave-induced helium plasmas. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1994, 49, 31-45.	2.9	13
22	The Influence of the Optical Viewing Axis on the Performance of the Microwave-Induced Plasma GC Detector. Applied Spectroscopy, 1988, 42, 1011-1015.	2.2	5
23	Automated access to spectrochemical databases. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1988, 43, 93-101.	2.9	3
24	An experimental study of the signal-to-noise ratio in the microwave-induced plasma gas Chromatographie detector. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1987, 42, 309-322.	2.9	15
25	Determination of electron density in an atomic plasma by least-squares fit to the Stark profile. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1984, 39, 813-818.	2.9	34
26	Correction for light absorption in fluorescence studies of protein-ligand interactions. Analytical Biochemistry, 1983, 132, 353-361.	2.4	249
27	A novel method for the study of atomization processes in the microwave-induced plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1983, 38, 75-80.	2.9	5
28	A Critical Evaluation of the Tangential Flow Torch Microwave-Induced Plasma Detector for Gas Chromatography. Applied Spectroscopy, 1983, 37, 439-443.	2.2	32
29	Fabrication and Utilization of a High-Power Microwave Supply for Electrodeless Discharge Lamps and other Spectrochemical Emission Sources. Applied Spectroscopy, 1981, 35, 308-311.	2.2	6
30	Constriction of a microwave-induced plasma by a magnetic pinch. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1981, 36, 925-929.	2.9	24
31	Characterization of an enzymatic determination of arsenic(V) based on response surface methodology. Analytica Chimica Acta, 1981, 133, 169-182.	5.4	19
32	Some fundamental measurements of the atmospheric-pressure, microwave-induced discharge. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1980, 35, 569-579.	2.9	28
33	Enzyme-catalyzed reaction-rate method for determination of arsenic in water. Analytical Chemistry, 1978, 50, 1608-1611.	6.5	9
34	A Critical Evaluation of Fabrication Details and Operating Conditions Influencing Microwave-Excited Electrodeless Discharge Lamps. Applied Spectroscopy, 1978, 32, 63-69.	2.2	4
35	Laser-induced breakdown spectroscopy using sequential laser pulses. , 0, , 516-538.		2