Grégory Verdeil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2129333/publications.pdf

Version: 2024-02-01

37	2,031 citations	22	33
papers		h-index	g-index
39	39	39	4254
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Regulatory circuits of T cell function in cancer. Nature Reviews Immunology, 2016, 16, 599-611.	22.7	445
2	Inhibitory Receptors Beyond T Cell Exhaustion. Frontiers in Immunology, 2015, 6, 310.	4.8	188
3	Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nature Communications, 2017, 8, 593.	12.8	175
4	Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells., 2019, 7, 257.		120
5	Molecular profiling of <scp>CD</scp> 8 T cells in autochthonous melanoma identifies <i>Maf</i> as driver of exhaustion. EMBO Journal, 2015, 34, 2042-2058.	7.8	100
6	CD8 T Cell Help for Innate Antitumor Immunity. Journal of Immunology, 2007, 179, 6651-6662.	0.8	94
7	<i>Helicobacter pylori</i> infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut, 2022, 71, 457-466.	12.1	87
8	The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11115-11120.	7.1	79
9	Very Late Antigen-1 Marks Functional Tumor-Resident CD8 T Cells and Correlates with Survival of Melanoma Patients. Frontiers in Immunology, 2016, 7, 573.	4.8	73
10	STAT5-Mediated Signals Sustain a TCR-Initiated Gene Expression Program toward Differentiation of CD8 T Cell Effectors. Journal of Immunology, 2006, 176, 4834-4842.	0.8	72
11	Distinct Thresholds for CD8 T Cell Activation Lead to Functional Heterogeneity: CD8 T Cell Priming Can Occur Independently of Cell Division. Journal of Immunology, 2003, 170, 2442-2448.	0.8	49
12	Active STAT5 Regulates T-bet and Eomesodermin Expression in CD8 T Cells and Imprints a T-betâ€"Dependent Tc1 Program with Repressed IL-6/TGF-β1 Signaling. Journal of Immunology, 2013, 191, 3712-3724.	0.8	49
13	Adjuvants targeting innate and adaptive immunity synergize to enhance tumor immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16683-16688.	7.1	46
14	Severe COVID-19 patients exhibit an ILC2 NKG2D+ population in their impaired ILC compartment. Cellular and Molecular Immunology, 2021, 18, 484-486.	10.5	41
15	c-MAF, a Swiss Army Knife for Tolerance in Lymphocytes. Frontiers in Immunology, 2020, 11, 206.	4.8	39
16	Targeting STAT3 and STAT5 in Tumor-Associated Immune Cells to Improve Immunotherapy. Cancers, 2019, 11, 1832.	3.7	38
17	Activated STAT5 Promotes Long-Lived Cytotoxic CD8+ T Cells That Induce Regression of Autochthonous Melanoma. Cancer Research, 2012, 72, 76-87.	0.9	36
18	LAG-3 and PD-1+LAG-3 inhibition promote anti-tumor immune responses in human autologous melanoma/T cell co-cultures. Oncolmmunology, 2020, 9, 1736792.	4.6	36

#	Article	IF	CITATIONS
19	Epithelial-Mesenchymal-Transition-Like and TGFÎ ² Pathways Associated with Autochthonous Inflammatory Melanoma Development in Mice. PLoS ONE, 2012, 7, e49419.	2.5	34
20	Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy. Cancers, 2021, 13, 4712.	3.7	29
21	Contribution of TCR Signaling Strength to CD8+ T Cell Peripheral Tolerance Mechanisms. Journal of Immunology, 2014, 193, 3409-3416.	0.8	28
22	Maf deficiency in T cells dysregulates Treg - TH17 balance leading to spontaneous colitis. Scientific Reports, 2019, 9, 6135.	3.3	25
23	Gene Profiling Approach to Establish the Molecular Bases for Partial versus Full Activation of Na $ ilde{A}^-$ ve CD8 T Lymphocytes. Annals of the New York Academy of Sciences, 2002, 975, 68-76.	3.8	23
24	Temporal cross-talk between TCR and STAT signals for CD8 T cell effector differentiation. European Journal of Immunology, 2006, 36, 3090-3100.	2.9	23
25	CD40 Agonist Restores the Antitumor Efficacy of Anti-PD1 Therapy in Muscle-Invasive Bladder Cancer in an IFN I/II-Mediated Manner. Cancer Immunology Research, 2020, 8, 1180-1192.	3.4	19
26	From T cell "exhaustion―to anti-cancer immunity. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 49-57.	7.4	18
27	Inflammatory B cells correlate with failure to checkpoint blockade in melanoma patients. Oncolmmunology, 2021, 10, 1873585.	4.6	15
28	câ€Maf enforces cytokine production and promotes memoryâ€like responses in mouse and human type 2 innate lymphoid cells. EMBO Journal, 2022, 41, e109300.	7.8	10
29	Immunosuppression in inflammatory melanoma: can it be resisted by adoptively transferred <scp>T</scp> cells?. Pigment Cell and Melanoma Research, 2013, 26, 167-175.	3.3	9
30	29th Annual meeting of the Society for Immunotherapy of Cancer (SITC)., 2015, 3, .		9
31	More T Cells versus Better T Cells in Patients with Breast Cancer. Cancer Discovery, 2017, 7, 1062-1064.	9.4	6
32	Murine CD8 Tâ€cell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density. European Journal of Immunology, 2020, 50, 505-514.	2.9	6
33	Unleashing antitumor T-cell activation without ensuing autoimmunity: the case for A20-deletion in adoptive CD8 ⁺ T-cell therapy. Oncolmmunology, 2014, 3, e958951.	4.6	4
34	<i>MAF</i> drives CD8 ⁺ T-cell exhaustion. Oncolmmunology, 2016, 5, e1082707.	4.6	3
35	Distinct patterns of cytolytic Tâ€cell activation by different tumour cells revealed by Ca ²⁺ signalling and granule mobilization. Immunology, 2017, 150, 199-212.	4.4	3
36	Peripheral Deletion of CD8 T Cells Requires p38 MAPK in Cross-Presenting Dendritic Cells. Journal of Immunology, 2017, 199, 2713-2720.	0.8	0

#	Article	IF	CITATIONS
37	Using gammaâ€cytokine complexes to improve antigen specific CD8 T cell responses in tumorâ€bearing mice. FASEB Journal, 2008, 22, 1076.3.	0.5	O