
Manuel S Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constitutive Activation of p62/Sequestosome-1-Mediated Proteaphagy Regulates Proteolysis and Impairs Cell Death in Bortezomib-Resistant Mantle Cell Lymphoma. Cancers, 2022, 14, 923.	3.7	5
2	Ubiquitin-chains dynamics and its role regulating crucial cellular processes. Seminars in Cell and Developmental Biology, 2022, 132, 155-170.	5.0	3
3	Exploring selective autophagy events in multiple biologic models using LC3-interacting regions (LIR)-based molecular traps. Scientific Reports, 2022, 12, 7652.	3.3	5
4	Inhibition of the proteasome and proteaphagy enhances apoptosis in FLT3â€ITDâ€driven acute myeloid leukemia. FEBS Open Bio, 2021, 11, 48-60.	2.3	4
5	SUMOylation modulates the stability and function of PI3K-p110β. Cellular and Molecular Life Sciences, 2021, 78, 4053-4065.	5.4	11
6	Fluctuations in AKT and PTEN Activity Are Linked by the E3 Ubiquitin Ligase cCBL. Cells, 2021, 10, 2803.	4.1	4
7	Mechanisms Regulating the UPS-ALS Crosstalk: The Role of Proteaphagy. Molecules, 2020, 25, 2352.	3.8	18
8	Identification of Small Molecules Disrupting the Ubiquitin Proteasome System in Malaria. ACS Infectious Diseases, 2019, 5, 2105-2117.	3.8	8
9	Using Ubiquitin Binders to Decipher the Ubiquitin Code. Trends in Biochemical Sciences, 2019, 44, 599-615.	7.5	65
10	NEDDylation promotes nuclear protein aggregation and protects the Ubiquitin Proteasome System upon proteotoxic stress. Nature Communications, 2018, 9, 4376.	12.8	73
11	A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation. Scientific Reports, 2017, 7, 40756.	3.3	58
12	Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation. Journal of Biological Chemistry, 2017, 292, 15340-15351.	3.4	28
13	Analysis of defective protein ubiquitylation associated to adriamycin resistant cells. Cell Cycle, 2017, 16, 2337-2344.	2.6	5
14	Red Blood Cells in Clinical Proteomics. Methods in Molecular Biology, 2017, 1619, 173-181.	0.9	5
15	Concepts and Methodologies to Study Protein SUMOylation: An Overview. Methods in Molecular Biology, 2016, 1475, 3-22.	0.9	13
16	Real-Time Surface Plasmon Resonance (SPR) for the Analysis of Interactions Between SUMO Traps and Mono- or PolySUMO Moieties. Methods in Molecular Biology, 2016, 1475, 99-107.	0.9	2
17	Using Biotinylated SUMO-Traps to Analyze SUMOylated Proteins. Methods in Molecular Biology, 2016, 1475, 109-121.	0.9	6
18	TUBEs-Mass Spectrometry for Identification and Analysis of the Ubiquitin-Proteome. Methods in Molecular Biology, 2016, 1449, 177-192.	0.9	11

MANUEL S RODRIGUEZ

#	Article	IF	CITATIONS
19	Isolation of the Ubiquitin-Proteome from Tumor Cell Lines and Primary Cells Using TUBEs. Methods in Molecular Biology, 2016, 1449, 161-175.	0.9	8
20	Efficient monitoring of protein ubiquitylation levels using <scp>TUBE</scp> sâ€based microarrays. FEBS Letters, 2016, 590, 2748-2756.	2.8	4
21	New insights into host-parasite ubiquitin proteome dynamics in P. falciparum infected red blood cells using a TUBEs-MS approach. Journal of Proteomics, 2016, 139, 45-59.	2.4	20
22	Development of two novel high-throughput assays to quantify ubiquitylated proteins in cell lysates: application to screening of new anti-malarials. Malaria Journal, 2015, 14, 200.	2.3	13
23	The Ubiquitin-Proteasome System (UPS) as a Cancer Drug Target: Emerging Mechanisms and Therapeutics. , 2015, , 225-264.		10
24	Analysis of PTEN ubiquitylation and SUMOylation using molecular traps. Methods, 2015, 77-78, 112-118.	3.8	14
25	Tetramerizationâ€defects of p53 result in aberrant ubiquitylation and transcriptional activity. Molecular Oncology, 2014, 8, 1026-1042.	4.6	20
26	Magnetic isolation of Plasmodium falciparum schizonts iRBCs to generate a high parasitaemia and synchronized in vitro culture. Malaria Journal, 2014, 13, 112.	2.3	28
27	Analysis of SUMOylated proteins using SUMO-traps. Scientific Reports, 2013, 3, 1690.	3.3	32
28	Rotavirus Viroplasm Proteins Interact with the Cellular SUMOylation System: Implications for Viroplasm-Like Structure Formation. Journal of Virology, 2013, 87, 807-817.	3.4	24
29	Targeting the Ubiquitin Proteasome System: Beyond Proteasome Inhibition. Current Pharmaceutical Design, 2013, 19, 4053-4093.	1.9	27
30	Strategies to Identify Recognition Signals and Targets of SUMOylation. Biochemistry Research International, 2012, 2012, 1-16.	3.3	34
31	Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). Journal of Proteomics, 2012, 75, 2998-3014.	2.4	90
32	Isolation of Ubiquitylated Proteins Using Tandem Ubiquitin-Binding Entities. Methods in Molecular Biology, 2012, 832, 173-183.	0.9	34
33	Heterologous SUMO-2/3-Ubiquitin Chains Optimize lκBα Degradation and NF-κB Activity. PLoS ONE, 2012, 7, e51672.	2.5	51
34	Role of Monoubiquitylation on the Control of lκBα Degradation and NF-κB Activity. PLoS ONE, 2011, 6, e25397.	2.5	16
35	Properties of natural and artificial proteins displaying multiple ubiquitin-binding domains. Biochemical Society Transactions, 2010, 38, 40-45.	3.4	16
36	Oligomerization conditions Mdm2-mediated efficient p53 polyubiquitylation but not its proteasomal degradation. International Journal of Biochemistry and Cell Biology, 2010, 42, 725-735.	2.8	12

MANUEL S RODRIGUEZ

#	Article	IF	CITATIONS
37	Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitinâ€binding entities. EMBO Reports, 2009, 10, 1250-1258.	4.5	407
38	Alternative UPS drug targets upstream the 26S proteasome. International Journal of Biochemistry and Cell Biology, 2008, 40, 1126-1140.	2.8	21
39	Efficient approaches for characterizing ubiquitinated proteins. Biochemical Society Transactions, 2008, 36, 823-827.	3.4	31
40	SUMO-1 modification activates the transcriptional response of p53. EMBO Journal, 1999, 18, 6455-6461.	7.8	602
41	SUMO-1 Modification of ll̂ºBα Inhibits NF-κB Activation. Molecular Cell, 1998, 2, 233-239.	9.7	982