Pierdomenico Perata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2128492/publications.pdf

Version: 2024-02-01

167 14,015 63 112 papers citations h-index g-index

172 172 172 11149
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mobile plant <scp>microRNAs</scp> allow communication within and between organisms. New Phytologist, 2022, 235, 2176-2182.	3.5	11
2	<i>Botrytis cinerea</i> induces local hypoxia in Arabidopsis leaves. New Phytologist, 2021, 229, 173-185.	3.5	40
3	Auxin is required for the long coleoptile trait in <i>japonica</i> rice under submergence. New Phytologist, 2021, 229, 85-93.	3.5	25
4	Plant performance and food security in a wetter world. New Phytologist, 2021, 229, 5-7.	3.5	11
5	Energy and sugar signaling during hypoxia. New Phytologist, 2021, 229, 57-63.	3.5	58
6	Evidences for a Nutritional Role of Iodine in Plants. Frontiers in Plant Science, 2021, 12, 616868.	1.7	44
7	The Oxidative Paradox in Low Oxygen Stress in Plants. Antioxidants, 2021, 10, 332.	2.2	23
8	Targeted knockout of the gene OsHOL1 removes methyl iodide emissions from rice plants. Scientific Reports, 2021, 11, 17010.	1.6	8
9	Fruit Colour and Novel Mechanisms of Genetic Regulation of Pigment Production in Tomato Fruits. Horticulturae, 2021, 7, 259.	1.2	23
10	Nocturnal gibberellin biosynthesis is carbon dependent and adjusts leaf expansion rates to variable conditions. Plant Physiology, 2021, 185, 228-239.	2.3	10
11	Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nature Plants, 2021, 7, 1379-1388.	4.7	57
12	ARGONAUTE1 and ARGONAUTE4 Regulate Gene Expression and Hypoxia Tolerance. Plant Physiology, 2020, 182, 287-300.	2.3	22
13	Ethylene Signaling Controls Fast Oxygen Sensing in Plants. Trends in Plant Science, 2020, 25, 3-6.	4.3	34
14	Similar and Yet Different: Oxygen Sensing in Animals and Plants. Trends in Plant Science, 2020, 25, 6-9.	4.3	13
15	Alternative Splicing in the Anthocyanin Fruit Gene Encoding an R2R3 MYB Transcription Factor Affects Anthocyanin Biosynthesis in Tomato Fruits. Plant Communications, 2020, 1, 100006.	3.6	62
16	Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Scientific Reports, 2020, 10, 16669.	1.6	44
17	Anthocyanins from Purple Tomatoes as Novel Antioxidants to Promote Human Health. Antioxidants, 2020, 9, 1017.	2.2	35
18	Differential submergence tolerance between juvenile and adult Arabidopsis plants involves the ANAC017 transcription factor. Plant Journal, 2020, 104, 979-994.	2.8	42

#	Article	IF	CITATIONS
19	Jasmonate Signalling Contributes to Primary Root Inhibition Upon Oxygen Deficiency in Arabidopsis thaliana. Plants, 2020, 9, 1046.	1.6	23
20	RNAi Mediated Hypoxia Stress Tolerance in Plants. International Journal of Molecular Sciences, 2020, 21, 9394.	1.8	7
21	An Improved HRPE-Based Transcriptional Output Reporter to Detect Hypoxia and Anoxia in Plant Tissue. Biosensors, 2020, 10, 197.	2.3	13
22	The calcineurin \hat{I}^2 -like interacting protein kinase CIPK25 regulates potassium homeostasis under low oxygen in Arabidopsis. Journal of Experimental Botany, 2020, 71, 2678-2689.	2.4	19
23	The Many Facets of Hypoxia in Plants. Plants, 2020, 9, 745.	1.6	74
24	What's behind Purple Tomatoes? Insight into the Mechanisms of Anthocyanin Synthesis in Tomato Fruits. Plant Physiology, 2020, 182, 1841-1853.	2.3	35
25	Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science, 2019, 365, 65-69.	6.0	146
26	A Ratiometric Sensor Based on Plant N-Terminal Degrons Able to Report Oxygen Dynamics in Saccharomyces cerevisiae. Journal of Molecular Biology, 2019, 431, 2810-2820.	2.0	24
27	Zinc Excess Induces a Hypoxia-Like Response by Inhibiting Cysteine Oxidases in Poplar Roots. Plant Physiology, 2019, 180, 1614-1628.	2.3	19
28	Exploring Legume-Rhizobia Symbiotic Models for Waterlogging Tolerance. Frontiers in Plant Science, 2019, 10, 578.	1.7	19
29	Conservation of ethanol fermentation and its regulation in land plants. Journal of Experimental Botany, 2019, 70, 1815-1827.	2.4	51
30	Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. Molecular Plant, 2019, 12, 538-551.	3.9	105
31	Dissection of coleoptile elongation in <i>japonica</i> rice under submergence through integrated genomeâ€wide association mapping and transcriptional analyses. Plant, Cell and Environment, 2019, 42, 1832-1846.	2.8	36
32	lodine Accumulation and Tolerance in Sweet Basil (Ocimum basilicum L.) With Green or Purple Leaves Grown in Floating System Technique. Frontiers in Plant Science, 2019, 10, 1494.	1.7	40
33	Effect of Iodine treatments on Ocimum basilicum L.: Biofortification, phenolics production and essential oil composition. PLoS ONE, 2019, 14, e0226559.	1.1	34
34	A Synthetic Oxygen Sensor for Plants Based on Animal Hypoxia Signaling. Plant Physiology, 2019, 179, 986-1000.	2.3	26
35	Group VII Ethylene Response Factors in Arabidopsis: Regulation and Physiological Roles. Plant Physiology, 2018, 176, 1143-1155.	2.3	84
36	The rice <i>SUB1A</i> gene: Making adaptation to submergence and postâ€submergence possible. Plant, Cell and Environment, 2018, 41, 717-720.	2.8	8

#	Article	IF	Citations
37	Gene Regulation and Survival under Hypoxia Requires Starch Availability and Metabolism. Plant Physiology, 2018, 176, 1286-1298.	2.3	95
38	Optimizing shelf life conditions for anthocyanin-rich tomatoes. PLoS ONE, 2018, 13, e0205650.	1.1	17
39	The atroviolacea Gene Encodes an R3-MYB Protein Repressing Anthocyanin Synthesis in Tomato Plants. Frontiers in Plant Science, 2018, 9, 830.	1.7	73
40	Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings. Functional and Integrative Genomics, 2018, 18, 627-644.	1.4	34
41	New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant, Cell and Environment, 2017, 40, 473-482.	2.8	99
42	Phenotiki: an open software and hardware platform for affordable and easy imageâ€based phenotyping of rosetteâ€shaped plants. Plant Journal, 2017, 90, 204-216.	2.8	96
43	Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 2017, 214, 1403-1407.	3.5	146
44	Flooding and low oxygen responses in plants. Functional Plant Biology, 2017, 44, iii.	1.1	62
45	Ageâ€dependent regulation of <scp>ERFâ€VII</scp> transcription factor activity in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2017, 40, 2333-2346.	2.8	47
46	A calcineurin B-like protein participates in low oxygen signalling in rice. Functional Plant Biology, 2017, 44, 917.	1.1	17
47	lodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology, 2017, 44, 16-26.	3.3	123
48	Functional Balancing of the Hypoxia Regulators RAP2.12 and HRA1 Takes Place in vivo in Arabidopsis thaliana Plants. Frontiers in Plant Science, 2017, 8, 591.	1.7	20
49	Ascophyllum nodosum Seaweed Extract Alleviates Drought Stress in Arabidopsis by Affecting Photosynthetic Performance and Related Gene Expression. Frontiers in Plant Science, 2017, 8, 1362.	1.7	137
50	Plant responses to flooding stress. Current Opinion in Plant Biology, 2016, 33, 64-71.	3.5	254
51	Universal stress protein HRU1 mediates ROS homeostasis under anoxia. Nature Plants, 2015, 1, 15151.	4.7	96
52	New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology, 2015, 25, 130-137.	3.5	179
53	Tomato R2R3-MYB Proteins SIANT1 and SIAN2: Same Protein Activity, Different Roles. PLoS ONE, 2015, 10, e0136365.	1.1	133
54	A Trihelix DNA Binding Protein Counterbalances Hypoxia-Responsive Transcriptional Activation in Arabidopsis. PLoS Biology, 2014, 12, e1001950.	2.6	86

#	Article	IF	CITATIONS
55	Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nature Communications, 2014, 5, 3425.	5.8	293
56	Plant responses to flooding. Frontiers in Plant Science, 2014, 5, 226.	1.7	34
57	Ethylene influences in vitro regeneration frequency in the FR13A rice harbouring the SUB1A gene. Plant Growth Regulation, 2014, 72, 97-103.	1.8	12
58	Analysis of the role of the pyruvate decarboxylase gene family in <i><scp>A</scp>rabidopsis thaliana</i> under lowâ€oxygen conditions. Plant Biology, 2014, 16, 28-34.	1.8	81
59	Physiological responses to Megafol \hat{A}^{\otimes} treatments in tomato plants under drought stress: A phenomic and molecular approach. Scientia Horticulturae, 2014, 174, 185-192.	1.7	149
60	A reassessment of the role of sucrose synthase in the hypoxic sucroseâ€ethanol transition in <scp>A</scp> rabidopsis. Plant, Cell and Environment, 2014, 37, 2294-2302.	2.8	42
61	Transcriptional Regulation Under Low Oxygen Stress in Plants. Plant Cell Monographs, 2014, , 77-93.	0.4	0
62	lodine Fortification of Vegetables Improves Human Iodine Nutrition: In Vivo Evidence for a New Model of Iodine Prophylaxis. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E694-E697.	1.8	49
63	Quiescence in rice submergence tolerance: an evolutionary hypothesis. Trends in Plant Science, 2013, 18, 377-381.	4.3	26
64	Nighttime Sugar Starvation Orchestrates Gibberellin Biosynthesis and Plant Growth in <i>Arabidopsis</i>). Plant Cell, 2013, 25, 3760-3769.	3.1	76
65	Low Oxygen Response Mechanisms in Green Organisms. International Journal of Molecular Sciences, 2013, 14, 4734-4761.	1.8	81
66	New Role for an Old Rule: Nâ€end Ruleâ€Mediated Degradation of Ethylene Responsive Factor Proteins Governs Low Oxygen Response in Plants ^F . Journal of Integrative Plant Biology, 2013, 55, 31-39.	4.1	31
67	<scp>APETALA</scp> 2/Ethylene Responsive Factor (<scp>AP</scp> 2/ <scp>ERF</scp>) transcription factors: mediators of stress responses and developmental programs. New Phytologist, 2013, 199, 639-649.	3.5	768
68	Accumulation of anthocyanins in tomato skin extends shelf life. New Phytologist, 2013, 200, 650-655.	3.5	78
69	Tomato fruits: a good target for iodine biofortification. Frontiers in Plant Science, 2013, 4, 205.	1.7	94
70	GENOMIC APPROACHES TO UNVEIL THE PHYSIOLOGICAL PATHWAYS ACTIVATED IN ARABIDOPSIS TREATED WITH PLANT-DERIVED RAW EXTRACTS. Acta Horticulturae, 2013, , 161-174.	0.1	17
71	A Mutant in the <i>ADH1</i> Gene of <i>Chlamydomonas reinhardtii</i> Elicits Metabolic Restructuring during Anaerobiosis Â. Plant Physiology, 2012, 158, 1293-1305.	2.3	60
72	Reactive Oxygen Species-Driven Transcription in Arabidopsis under Oxygen Deprivation Â. Plant Physiology, 2012, 159, 184-196.	2.3	117

#	Article	IF	CITATIONS
73	Misexpression of a Chloroplast Aspartyl Protease Leads to Severe Growth Defects and Alters Carbohydrate Metabolism in Arabidopsis Â. Plant Physiology, 2012, 160, 1237-1250.	2.3	34
74	Metabolic engineering of the iodine content in Arabidopsis. Scientific Reports, 2012, 2, 338.	1.6	32
75	How plants sense low oxygen. Plant Signaling and Behavior, 2012, 7, 813-816.	1.2	14
76	Making sense of low oxygen sensing. Trends in Plant Science, 2012, 17, 129-138.	4.3	465
77	ROS signaling as common element in low oxygen and heat stresses. Plant Physiology and Biochemistry, 2012, 59, 3-10.	2.8	100
78	Distinct Mechanisms Regulating Gene Expression Coexist within the Fermentative Pathways inChlamydomonas reinhardtii. Scientific World Journal, The, 2012, 2012, 1-9.	0.8	4
79	<i>SUB1A</i> à€dependent and â€independent mechanisms are involved in the flooding tolerance of wild rice species. Plant Journal, 2012, 72, 282-293.	2.8	88
80	Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011, 479, 419-422.	13.7	628
81	lodine biofortification in tomato. Journal of Plant Nutrition and Soil Science, 2011, 174, 480-486.	1.1	77
82	Anthocyanin tomato mutants: Overview and characterization of an anthocyanin-less somaclonal mutant. Plant Biosystems, 2011, 145, 436-444.	0.8	18
83	Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of Aft and atv genes. Journal of Plant Physiology, 2011, 168, 270-279.	1.6	116
84	Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile. Journal of Plant Physiology, 2011, 168, 2234-2243.	1.6	29
85	Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of αâ€amylase production in flooded rice plants. Plant Biology, 2011, 13, 611-619.	1.8	39
86	Alcohol dehydrogenase and hydrogenase transcript fluctuations during a day–night cycle in <i>Chlamydomonas reinhardtii</i> : the role of anoxia. New Phytologist, 2011, 190, 488-498.	3.5	16
87	Plants and flooding stress. New Phytologist, 2011, 190, 269-273.	3.5	83
88	Transcript profiling of chitosan-treated Arabidopsis seedlings. Journal of Plant Research, 2011, 124, 619-629.	1.2	87
89	Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Annals of Botany, 2011, 107, 1335-1343.	1.4	87
90	HRE-Type Genes are Regulated by Growth-Related Changes in Internal Oxygen Concentrations During the Normal Development of Potato (Solanum tuberosum) Tubers. Plant and Cell Physiology, 2011, 52, 1957-1972.	1.5	25

#	Article	IF	Citations
91	Iodine Fortification Plant Screening Process and Accumulation in Tomato Fruits and Potato Tubers. Communications in Soil Science and Plant Analysis, 2011, 42, 706-718.	0.6	59
92	Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11, 719.	1.2	307
93	HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant Journal, 2010, 62, 302-315.	2.8	384
94	Hormonal interplay during adventitious root formation in flooded tomato plants. Plant Journal, 2010, 63, 551-562.	2.8	237
95	The Heat-Inducible Transcription Factor <i>HsfA2</i> Enhances Anoxia Tolerance in Arabidopsis. Plant Physiology, 2010, 152, 1471-1483.	2.3	226
96	Identification of Grapevine Cultivar Biomarkers Using Surface-Enhanced Laser Desorption and Ionization (SELDI-TOF-MS). American Journal of Enology and Viticulture, 2010, 61, 492-497.	0.9	5
97	Chapter 4 Low Oxygen Signaling and Tolerance in Plants. Advances in Botanical Research, 2009, 50, 139-198.	0.5	64
98	Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression. Plant Biology, 2009, 11, 561-573.	1.8	39
99	Rice germination and seedling growth in the absence of oxygen. Annals of Botany, 2009, 103, 181-196.	1.4	238
100	Purple as a tomato: towards high anthocyanin tomatoes. Trends in Plant Science, 2009, 14, 237-241.	4.3	174
101	Expansin gene expression and anoxic coleoptile elongation in rice cultivars. Journal of Plant Physiology, 2009, 166, 1576-1580.	1.6	36
102	Biochemical and Molecular Aspects of Modified and Controlled Atmospheres. , 2009, , .		4
103	Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Functional Plant Biology, 2008, 35, 606.	1.1	141
104	Gibberellins, jasmonate and abscisic acid modulate the sucroseâ€induced expression of anthocyanin biosynthetic genes in <i>Arabidopsis</i> New Phytologist, 2008, 179, 1004-1016.	3.5	336
105	Heat acclimation and crossâ€tolerance against anoxia in <i>Arabidopsis</i> . Plant, Cell and Environment, 2008, 31, 1029-1037.	2.8	87
106	Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening. BMC Genomics, 2008, 9, 176.	1.2	47
107	Transcript Profiling of the Anoxic Rice Coleoptile. Plant Physiology, 2007, 144, 218-231.	2.3	287
108	Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends in Plant Science, 2007, 12, 43-46.	4.3	131

#	Article	IF	Citations
109	Plant neurobiology: no brain, no gain?. Trends in Plant Science, 2007, 12, 135-136.	4.3	146
110	Sugar effects on early seedling development in Arabidopsis. Plant Growth Regulation, 2007, 52, 217-228.	1.8	40
111	Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiology, 2006, 140, 637-646.	2.3	738
112	Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis. Journal of Plant Research, 2006, 119, 115-123.	1.2	108
113	Differential expression of two fructokinases in Oryza sativa seedlings grown under aerobic and anaerobic conditions. Journal of Plant Research, 2006, 119, 351-356.	1.2	22
114	A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. Plant Journal, 2005, 44, 633-645.	2.8	99
115	A Genome-Wide Analysis of the Effects of Sucrose on Gene Expression in Arabidopsis Seedlings under Anoxia. Plant Physiology, 2005, 137, 1130-1138.	2.3	273
116	The Use of Microarrays to Study the Anaerobic Response in Arabidopsis. Annals of Botany, 2005, 96, 661-668.	1.4	54
117	Copper localization in Cannabis sativa L. grown in a copper-rich solution. Euphytica, 2004, 140, 33-38.	0.6	46
118	Anoxia Effects on Plant Physiology. , 2004, , 1-3.		0
119	Â-Amylase Expression under Anoxia in Rice Seedlings: An Update. Russian Journal of Plant Physiology, 2003, 50, 737-743.	0.5	22
120	Gibberellins are not required for rice germination under anoxia. Plant and Soil, 2003, 253, 137-143.	1.8	20
121	Sugar Modulation of alpha-Amylase Genes under Anoxia. Annals of Botany, 2003, 91, 143-148.	1.4	64
122	Anoxia: The Role of Carbohydrates in Cereal Germination. , 2003, , 123-131.		0
123	The slender Rice Mutant, with Constitutively Activated Gibberellin Signal Transduction, Has Enhanced Capacity for Abscisic Acid Level. Plant and Cell Physiology, 2002, 43, 974-979.	1.5	26
124	Elicitors of defence responses repress a gibberellin signalling pathway in barley embryos. Journal of Plant Physiology, 2002, 159, 1383-1386.	1.6	7
125	Repression of α-Amylase Activity by Anoxia in Grains of Barley is Independent of Ethanol Toxicity or Action of Abscisic Acid. Plant Biology, 2002, 4, 266-272.	1.8	11
126	Why and How Do Plant Cells Sense Sugars?. Annals of Botany, 2001, 88, 803-812.	1.4	82

#	Article	IF	CITATIONS
127	Carbohydrate–ethanol transition in cereal grains under anoxia. New Phytologist, 2001, 151, 607-612.	3.5	24
128	Characterization of isoforms of hexose kinases in rice embryo. Phytochemistry, 2000, 53, 195-200.	1.4	31
129	Glucose modulates the abscisic acid-inducible Rab16A gene in cereal embryos. Plant Molecular Biology, 2000, 42, 451-460.	2.0	18
130	Glucose repression of alpha-amylase in barley embryos is independent of GAMYB transcription. Plant Molecular Biology, 2000, 44, 85-90.	2.0	10
131	Sugar Uptake and Transport in Rice Embryo. Expression of Companion Cell-Specific Sucrose Transporter (OsSUT1) Induced by Sugar and Light. Plant Physiology, 2000, 124, 85-94.	2.3	117
132	Glucose and Disaccharide-Sensing Mechanisms Modulate the Expression of \hat{l}_{\pm} -amylase in Barley Embryos1. Plant Physiology, 2000, 123, 939-948.	2.3	92
133	Sucrose-Starch Conversion in Heterotrophic Tissues of Plants. Critical Reviews in Plant Sciences, 1999, 18, 489-525.	2.7	15
134	Sucrose Synthesis in Cereal Grains under Oxygen Deprivation. Journal of Plant Research, 1999, 112, 353-359.	1.2	20
135	Sugar sensing and α-amylase gene repression in rice embryos. Planta, 1998, 204, 420-428.	1.6	89
136	Effect of anoxia on gibberellic acid-induced protease and \hat{l}^2 -amylase processing in barley seeds. Journal of Plant Physiology, 1998, 152, 44-50.	1.6	9
137	Functional dissection of a sugar-repressed α-amylase gene (RAmy1A) promoter in rice embryos. FEBS Letters, 1998, 423, 81-85.	1.3	93
138	Sugar Repression of a Gibberellin-Dependent Signaling Pathway in Barley Embryos Plant Cell, 1997, 9, 2197-2208.	3.1	162
139	Sugar Repression of a Gibberellin-Dependent Signaling Pathway in Barley Embryos. Plant Cell, 1997, 9, 2197.	3.1	43
140	Mobilization of Endosperm Reserves in Cereal Seeds under Anoxia. Annals of Botany, 1997, 79, 49-56.	1.4	157
141	Effects of anoxia on sucrose degrading enzymes in cereal seeds. Journal of Plant Physiology, 1997, 150, 251-258.	1.6	30
142	Shrunken-1-encoded sucrose synthase is not required for the sucrose-ethanol transition in maize under anaerobic conditions. Plant Science, 1996, 119, 1-10.	1.7	12
143	Anaerobic carbohydrate metabolism in wheat and barley, two anoxia-intolerant cereal seeds. Journal of Experimental Botany, 1996, 47, 999-1006.	2.4	43
144	Effect of Anoxia on Carbohydrate Metabolism in Rice Seedlings. Plant Physiology, 1995, 108, 735-741.	2.3	203

#	Article	IF	CITATIONS
145	Amylolytic Activities in Cereal Seeds under Aerobic and Anaerobic Conditions. Plant Physiology, 1995, 109, 1069-1076.	2.3	164
146	Effect of anoxia on gibberellic acid-induced protease and \hat{l}^2 -amylase processing in barley seeds. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1134-1134.	0.0	0
147	Effect of anoxia on the induction of ?-amylase in cereal seeds. Planta, 1993, 191, 402.	1.6	88
148	Plant responses to anaerobiosis. Plant Science, 1993, 93, 1-17.	1.7	307
149	Immunological Detection of Acetaldehyde-Protein Adducts in Ethanol-Treated Carrot Cells. Plant Physiology, 1992, 98, 913-918.	2.3	40
150	Distinct Profiles of ADP- and UDP-Specific Sucrose Synthases in Developing Rice Grains. Bioscience, Biotechnology and Biochemistry, 1992, 56, 695-696.	0.6	3
151	Artifactual detection of ADP-dependent sucrose synthase in crude plant extracts. FEBS Letters, 1992, 309, 283-287.	1.3	12
152	Effect of anoxia on starch breakdown in rice and wheat seeds. Planta, 1992, 188, 611-8.	1.6	168
153	Effect of Leaf Senescence on Glyoxylate Cycle Enzyme Activities. Functional Plant Biology, 1992, 19, 723.	1.1	15
154	Ethanol metabolism in suspension cultured carrot cells. Physiologia Plantarum, 1991, 82, 103-108.	2.6	22
155	Monoclonal Antibody Recognition of Abscisic Acid Analogs. Plant Physiology, 1991, 95, 46-51.	2.3	52
156	Level of Abscisic Acid in Integuments, Nucellus, Endosperm, and Embryo of Peach Seeds (<i>Prunus) Tj ETQq0 0 (</i>	Ͻ rgBT /Ον	erlock 10 Tf 5
157	Ethanol-Induced Injuries to Carrot Cells. Plant Physiology, 1991, 95, 748-752.	2.3	153
158	Ethanol metabolism in suspension cultured carrot cells. Physiologia Plantarum, 1991, 82, 103-108.	2.6	1
159	A monoclonal antibody for the detection of conjugated forms of abscisic acid in plant tissues. Journal of Plant Growth Regulation, 1990, 9, 1-6.	2.8	23
160	Pattern of Variations in Abscisic Acid Content in Suspensors, Embryos, and Integuments of Developing Phaseolus coccineus Seeds. Plant Physiology, 1990, 94, 1776-1780.	2.3	26
161	Abscisic Acid Levels during Early Seed Development in <i>Sechium edule</i> Sw. Plant Physiology, 1989, 91, 1351-1355.	2.3	10
162	Solid Phase Radioimmunoassay for the Quantitation of Abscisic Acid in Plant Crude Extracts Using a New Monoclonal Antibody. Journal of Plant Physiology, 1989, 134, 441-446.	1.6	73

#	Article	IF	CITATIONS
163	Ethanol production and toxicity in suspension-cultured carrot cells and embryos. Planta, 1988, 173, 322-329.	1.6	28
164	Influence of Ethanol on Plant Cells and Tissues. Journal of Plant Physiology, 1986, 126, 181-188.	1.6	41
165	Physiological Responses of Cereal Seedlings to Ethanol. Journal of Plant Physiology, 1985, 119, 77-85.	1.6	27
166	Sucrose-Starch Conversion in Heterotrophic Tissues of Plants. , 0, .		14
167	Bacterial Endophytes Contribute to Rice Seedling Establishment Under Submergence. Frontiers in Plant Science, $0,13,.$	1.7	5