Francisco GonzÃ;lez-Galindo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2128102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Density and Temperature of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From the OI 557.7Ânm Dayglow Measured by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2022, 127,	3.6	6
2	Troposphere-to-mesosphere microphysics of carbon dioxide ice clouds in a Mars Global Climate Model. Icarus, 2022, 385, 115098.	2.5	9
3	Improved Modeling of Mars' HDO Cycle Using a Mars' Global Climate Model. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
4	The HDO Cycle on Mars: Comparison of ACS Observations With GCM Simulations. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
5	CO2 retrievals in the Mars daylight thermosphere from its 4.3†μm limb emission measured by OMEGA/MEx. Icarus, 2021, 353, 113830.	2.5	6
6	The lower dayside ionosphere of Mars from 14Âyears of MaRS radio science observations. Icarus, 2021, 359, 114213.	2.5	18
7	Study of the hydrogen escape rate at Mars during martian years 28 and 29 from comparisons between SPICAM/Mars express observations and GCM-LMD simulations. Icarus, 2021, 353, 113498.	2.5	16
8	Seasonal and Geographical Variability of the Martian Ionosphere From Mars Express Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006661.	3.6	13
9	The Wave Origins of Longitudinal Structures in ExoMars Trace Gas Orbiter (TGO) Aerobraking Densities. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028769.	2.4	5
10	On the derivation of thermospheric temperatures from dayglow emissions on Mars. Icarus, 2021, 358, 114284.	2.5	2
11	Imaging of Martian Circulation Patterns and Atmospheric Tides Through MAVEN/IUVS Nightglow Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027318.	2.4	13
12	Tidal Wave-Driven Variability in the Mars Ionosphere-Thermosphere System. Atmosphere, 2020, 11, 521.	2.3	14
13	First Detection of a Brief Mesoscale Elevated Stratopause in Very Early Winter. Geophysical Research Letters, 2020, 47, e2019GL086751.	4.0	4
14	Isobar Altitude Variations in the Upper Mesosphere Observed With IUVSâ€MAVEN in Response to Martian Dust Storms. Geophysical Research Letters, 2020, 47, e2020GL087468.	4.0	4
15	MAVEN ROSE Observations of the Response of the Martian Ionosphere to Dust Storms. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027083.	2.4	22
16	Modeling Windâ€Ðriven Ionospheric Dynamo Currents at Mars: Expectations for InSight Magnetic Field Measurements. Geophysical Research Letters, 2019, 46, 5083-5091.	4.0	20
17	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
18	MAVEN/NGIMS Thermospheric Neutral Wind Observations: Interpretation Using the Mâ€GITM General Circulation Model. Journal of Geophysical Research E: Planets, 2019, 124, 3283-3303.	3.6	20

#	Article	IF	CITATIONS
19	Effect of the Lateral Exospheric Transport on the Horizontal Hydrogen Distribution Near the Exobase of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 2441-2454.	2.4	6
20	Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	13
21	Reply to comment "On the hydrogen escape: Comment to variability of the hydrogen in the Martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling by JY. Chaufray etÂal.―by V. Krasnopolsky, Icarus, 281, 262. Icarus, 2018, 301, 132-135.	2.5	2
22	UV Dayglow Variability on Mars: Simulation With a Global Climate Model and Comparison With SPICAM/MEx Data. Journal of Geophysical Research E: Planets, 2018, 123, 1934-1952.	3.6	13
23	NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance. Space Science Reviews, 2018, 214, 1.	8.1	95
24	Spatial, Seasonal, and Solar Cycle Variations of the Martian Total Electron Content (TEC): Is the TEC a Good Tracer for Atmospheric Cycles?. Journal of Geophysical Research E: Planets, 2018, 123, 1746-1759.	3.6	20
25	MAVEN and the total electron content of the Martian ionosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 3526-3537.	2.4	12
26	Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMDâ€MGCM predictions. Journal of Geophysical Research: Space Physics, 2017, 122, 5782-5797.	2.4	36
27	Upper Neutral Atmosphere and Ionosphere. , 2017, , 433-463.		33
28	On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES. Journal of Geophysical Research E: Planets, 2017, 122, 2401-2428.	3.6	27
29	Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM. Icarus, 2017, 281, 55-72.	2.5	31
30	Mesospheric OH layer altitude at midlatitudes: variability over the Sierra Nevada Observatory in Granada, Spain (37°â€⁻N, 3°â€⁻W). Annales Geophysicae, 2017, 35, 1151-1164.	1.6	10
31	CO 2 non‣TE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express. Journal of Geophysical Research E: Planets, 2016, 121, 1066-1086.	3.6	6
32	Marsâ€solar wind interaction: LatHyS, an improved parallel 3â€D multispecies hybrid model. Journal of Geophysical Research: Space Physics, 2016, 121, 6378-6399.	2.4	54
33	Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO. Optics Express, 2016, 24, 3790.	3.4	25
34	MIPAS observations of longitudinal oscillations in the mesosphere and the lower thermosphere: climatology of odd-parity daily frequency modes. Atmospheric Chemistry and Physics, 2016, 16, 11019-11041.	4.9	6
35	Expected performances of the NOMAD/ExoMars instrument. Planetary and Space Science, 2016, 124, 94-104.	1.7	31
36	Global distributions of CO ₂ volume mixing ratio in the middle and upper atmosphere from daytime MIPAS high-resolution spectra. Atmospheric Measurement Techniques, 2016, 9, 6081-6100.	3.1	9

#	Article	IF	CITATIONS
37	Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. Optics Express, 2015, 23, 30028.	3.4	26
38	Cooling of the Martian thermosphere by CO ₂ radiation and gravity waves: An intercomparison study with two general circulation models. Journal of Geophysical Research E: Planets, 2015, 120, 913-927.	3.6	51
39	Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research E: Planets, 2015, 120, 2020-2035.	3.6	67
40	An extremely high-altitude plume seen at Mars' morning terminator. Nature, 2015, 518, 525-528.	27.8	24
41	Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 2015, 119, 233-249.	1.7	77
42	Variability of the hydrogen in the martian upper atmosphere as simulated by a 3D atmosphere–exosphere coupling. Icarus, 2015, 245, 282-294.	2.5	77
43	Three-dimensional Martian ionosphere model: II. Effect of transport processes due to pressure gradients. Journal of Geophysical Research E: Planets, 2014, 119, 1614-1636.	3.6	51
44	On the distribution of CO ₂ and CO in the mesosphere and lower thermosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5700-5718.	3.3	90
45	The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus, 2014, 233, 66-82.	2.5	47
46	New nitric oxide (NO) nightglow measurements with SPICAM/MEx as a tracer of Mars upper atmosphere circulation and comparison with LMDâ€MGCM model prediction: Evidence for asymmetric hemispheres. Journal of Geophysical Research E: Planets, 2013, 118, 2172-2179.	3.6	37
47	Temporal variability of waves at the proton cyclotron frequency upstream from Mars: Implications for Mars distant hydrogen exosphere. Geophysical Research Letters, 2013, 40, 3809-3813.	4.0	29
48	Threeâ€dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research E: Planets, 2013, 118, 2105-2123.	3.6	118
49	Gravity waves, cold pockets and CO ₂ clouds in the Martian mesosphere. Geophysical Research Letters, 2012, 39, .	4.0	71
50	Modeled O ₂ airglow distributions in the Martian atmosphere. Journal of Geophysical Research, 2012, 117, .	3.3	8
51	Mars exospheric thermal and non-thermal components: Seasonal and local variations. Icarus, 2012, 221, 682-693.	2.5	51
52	The martian mesosphere as revealed by CO2 cloud observations and General Circulation Modeling. Icarus, 2011, 216, 10-22.	2.5	41
53	Thermal and wind structure of the Martian thermosphere as given by two General Circulation Models. Planetary and Space Science, 2010, 58, 1832-1849.	1.7	24
54	Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus, 2010, 209, 452-469.	2.5	71

#	Article	IF	CITATIONS
55	Four Martian years of nightside upper thermospheric mass densities derived from electron reflectometry: Method extension and comparison with GCM simulations. Journal of Geophysical Research, 2010, 115, .	3.3	15
56	Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. Journal of Geophysical Research, 2009, 114, .	3.3	200
57	A groundâ€ŧoâ€exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research, 2009, 114, .	3.3	107
58	A groundâ€ŧoâ€exosphere Martian general circulation model: 2. Atmosphere during solstice conditions—Thermospheric polar warming. Journal of Geophysical Research, 2009, 114, .	3.3	43
59	Distribution of the ultraviolet nitric oxide Martian night airglow: Observations from Mars Express and comparisons with a oneâ€dimensional model. Journal of Geophysical Research, 2008, 113, .	3.3	59
60	The first Mars thermospheric general circulation model: The Martian atmosphere from the ground to 240 km. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	65
61	Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models. Journal of Geophysical Research, 2005, 110, .	3.3	65
62	The Mars Climate Database (version 4.3)		0

62 The Mars Climate Database (version 4.3). , 0, , .

9