
Takashi Matsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2127963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased serum cholesterol and long-chain fatty acid levels are associated with the efficacy of nivolumab in patients with non-small cell lung cancer. Cancer Immunology, Immunotherapy, 2022, 71, 203-217.	4.2	16
2	The Role of Ferroptosis in Adverse Left Ventricular Remodeling Following Acute Myocardial Infarction. Cells, 2022, 11, 1399.	4.1	15
3	Chemotherapy for patients with advanced lung cancer with interstitial lung disease: a prospective observational study. Therapeutic Advances in Chronic Disease, 2022, 13, 204062232211083.	2.5	2
4	Erlotinib and bevacizumab in elderly patients ≥75Âyears old with non-small cell lung cancer harboring epidermal growth factor receptor mutations. Investigational New Drugs, 2021, 39, 210-216.	2.6	4
5	Clinical utility of liquid biopsy for EGFR driver, T790M mutation and EGFR amplification in plasma in patients with acquired resistance to afatinib. BMC Cancer, 2021, 21, 57.	2.6	3
6	Genetic determinants of risk in autoimmune pulmonary alveolar proteinosis. Nature Communications, 2021, 12, 1032.	12.8	26
7	mTORâ€mediated calcium transients affect cardiac function in ex vivo ischemia–reperfusion injury. Physiological Reports, 2021, 9, e14807.	1.7	1
8	Efficacy of immune checkpoint inhibitors in non-small cell lung cancer with uncommon histology: a propensity-score-matched analysis. BMC Pulmonary Medicine, 2021, 21, 309.	2.0	2
9	Evaluation of Programmed Death Ligand 1 (<i>PD-L1</i>) Gene Amplification and Response to Nivolumab Monotherapy in Non–small Cell Lung Cancer. JAMA Network Open, 2020, 3, e2011818.	5.9	26
10	Clinical Outcomes of Anti-programmed Death-1 Antibody–Related Pneumonitis in Patients with Non-Small Cell Lung Cancer. SN Comprehensive Clinical Medicine, 2020, 2, 570-578.	0.6	8
11	Guidelines for evaluating myocardial cell death. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H891-H922.	3.2	135
12	The effects of Tel2 on cardiomyocyte survival. Life Sciences, 2019, 232, 116665.	4.3	1
13	The role of ubiquitin in cardiac ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H583-H585.	3.2	1
14	Olanzapine-containing antiemetic therapy for the prevention of carboplatin-induced nausea and vomiting. Cancer Chemotherapy and Pharmacology, 2019, 84, 147-153.	2.3	17
15	Impact of early inflammatory cytokine elevation after commencement of PD-1 inhibitors to predict efficacy in patients with non-small cell lung cancer. Medical Oncology, 2019, 36, 33.	2.5	66
16	Switch maintenance therapy with S-1 after induction therapy with carboplatin and nanoparticle albumin-bound paclitaxel in advanced lung squamous cell carcinoma. Investigational New Drugs, 2019, 37, 531-537.	2.6	3
17	Clinical impact of minocycline on afatinib-related rash in patients with non-small cell lung cancer harboring epidermal growth factor receptor mutations. Respiratory Investigation, 2018, 56, 179-183.	1.8	5
18	Stereotactic body radiotherapy for second primary lung cancer and intra-parenchymal lung metastasis in patients previously treated with surgery: evaluation of indications and predictors of decreased respiratory function. Acta Oncológica, 2018, 57, 1232-1239.	1.8	5

Τακάσηι Μάτσυι

#	Article	IF	CITATIONS
19	Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H659-H668.	3.2	234
20	Preexisting Interstitial Lung Disease and Lung Injury Associated with Irinotecan in Patients with Neoplasms. Anticancer Research, 2018, 38, 5937-5941.	1.1	7
21	Efficacy and Tolerability of High-Flow Nasal Cannula Oxygen Therapy for Hypoxemic Respiratory Failure in Patients with Interstitial Lung Disease with Do-Not-Intubate Orders: A Retrospective Single-Center Study. Respiration, 2018, 96, 323-329.	2.6	63
22	Switch maintenance therapy with docetaxel and bevacizumab after induction therapy with cisplatin, pemetrexed, and bevacizumab in advanced non-squamous non-small cell lung cancer: a phase II study. Medical Oncology, 2018, 35, 108.	2.5	3
23	Pathological Roles of Iron in Cardiovascular Disease. Current Drug Targets, 2018, 19, 1068-1076.	2.1	116
24	The mTOR Signaling Pathway in Myocardial Dysfunction in Type 2 Diabetes Mellitus. Current Diabetes Reports, 2017, 17, 38.	4.2	51
25	A Case of Small Cell Lung Cancer in Complete Remission for Nine Years After Recurrence by Solitary Brain Metastasis and Treatment with Stereotactic Irradiation. Japanese Journal of Lung Cancer, 2017, 57, 775-780.	0.1	0
26	Distinctive impact of pre-existing interstitial lung disease on the risk of chemotherapy-related lung injury in patients with lung cancer. Cancer Chemotherapy and Pharmacology, 2016, 77, 1031-1038.	2.3	14
27	Cone beam computed tomography of plastinated hearts for instruction of radiological anatomy. Surgical and Radiologic Anatomy, 2016, 38, 843-853.	1.2	8
28	Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1530-H1539.	3.2	34
29	Rhinosinusitis and disseminated cutaneous infection caused by Mycobacterium chelonae in an immunocompromised patient. Journal of Infection and Chemotherapy, 2015, 21, 691-694.	1.7	3
30	Impact of Preexisting Interstitial Lung Disease on Acute, Extensive Radiation Pneumonitis: Retrospective Analysis of Patients with Lung Cancer. PLoS ONE, 2015, 10, e0140437.	2.5	53
31	Retrospective analysis comparing pulmonary toxicity between S-1 and docetaxel in non-small-cell lung cancer patients with preexisting interstitial lung disease Journal of Clinical Oncology, 2015, 33, e19105-e19105.	1.6	1
32	Three-dimensional myocardial scarring along myofibers after coronary ischemia-reperfusion revealed by computerized images of histological assays. Physiological Reports, 2014, 2, e12072.	1.7	3
33	Retrospective evaluation of prophylactic cranial irradiation in patients with limited-stage small cell lung cancer with stereotactic radiotherapy: A multi-institutional study Journal of Clinical Oncology, 2014, 32, 7591-7591.	1.6	1
34	Cardiac mTOR protects the heart against ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H75-H85.	3.2	123
35	The Cardiomyocyte as a Source of Cytokines in Cardiac Injury. Journal of Cell Science & Therapy, 2011, s5, .	0.3	48
36	mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. American Journal of Physiology - Cell Physiology, 2010, 299, C1256-C1266.	4.6	118

Τακάσηι Μάτσυι

#	Article	IF	CITATIONS
37	Myocyte injury along myofibers in left ventricular remodeling after myocardial infarction. Interactive Cardiovascular and Thoracic Surgery, 2009, 9, 951-955.	1.1	10
38	Assessment of PI-3 Kinase and Akt in Ischemic Heart Diseases in Diabetes. Methods in Molecular Medicine, 2007, 139, 329-338.	0.8	10
39	Effects of chronic Akt activation on glucose uptake in the heart. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E789-E797.	3.5	49
40	Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. Journal of Molecular and Cellular Cardiology, 2005, 38, 63-71.	1.9	228
41	PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. Journal of Clinical Investigation, 2005, 115, 2128-2138.	8.2	221
42	Targeting ischemic cardiac dysfunction through gene transfer. Current Atherosclerosis Reports, 2003, 5, 191-195.	4.8	2
43	Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle, 2003, 2, 220-3.	2.6	79
44	Phenotypic Spectrum Caused by Transgenic Overexpression of Activated Akt in the Heart. Journal of Biological Chemistry, 2002, 277, 22896-22901.	3.4	391
45	Akt Activation Preserves Cardiac Function and Prevents Injury After Transient Cardiac Ischemia In Vivo. Circulation, 2001, 104, 330-335.	1.6	673
46	Prospects for Gene Therapy for Heart Failure. Circulation Research, 2000, 86, 616-621.	4.5	151
47	Cardiac signal transduction. Journal of Nuclear Cardiology, 2000, 7, 63-71.	2.1	3
48	Adenoviral Gene Transfer of Activated Phosphatidylinositol 3′-Kinase and Akt Inhibits Apoptosis of Hypoxic Cardiomyocytes In Vitro. Circulation, 1999, 100, 2373-2379.	1.6	367
49	Restoration of Contractile Function in Isolated Cardiomyocytes From Failing Human Hearts by Gene Transfer of SERCA2a. Circulation, 1999, 100, 2308-2311.	1.6	454
50	Adenoviral Gene Transfer of Phospholamban in Isolated Rat Cardiomyocytes. Circulation Research, 1997, 81, 145-153.	4.5	99