Hideki Asada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2127801/publications.pdf

Version: 2024-02-01

29 2,109 21 papers citations h-index

21 28 h-index g-index

501196

29 29 all docs citations

29 times ranked 2429 citing authors

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
2	Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Physical Review D, 2016, 94, .	4.7	160
3	Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Physical Review D, 2017, 96, .	4.7	127
4	Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Physical Review D, 2017, 95, .	4.7	117
5	Deflection angle of light in an Ellis wormhole geometry. Physical Review D, 2012, 85, .	4.7	116
6	ASTROMETRIC IMAGE CENTROID DISPLACEMENTS DUE TO GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE. Astrophysical Journal, 2011, 740, 121.	4.5	92
7	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
8	Deflection angle of light for an observer and source at finite distance from a rotating wormhole. Physical Review D, 2018, 98, .	4.7	70
9	Deflection angle of light for an observer and source at finite distance from a rotating global monopole. Physical Review D, 2019, 99, .	4.7	52
10	Gravitational lensing shear by an exotic lens object with negative convergence or negative mass. Physical Review D, 2013, 88, .	4.7	51
11	Demagnifying gravitational lenses toward hunting a clue of exotic matter and energy. Physical Review D, 2013, 87, .	4.7	48
12	Gravitational deflection angle of light: Definition by an observer and its application to an asymptotically nonflat spacetime. Physical Review D, 2020, 101, .	4.7	44
13	The Effects of Finite Distance on the Gravitational Deflection Angle of Light. Universe, 2019, 5, 218.	2.5	39
14	Gravitational lensing in Tangherlini spacetime in the weak gravitational field and the strong gravitational field. Physical Review D, 2014, 90, .	4.7	37
15	Can We See a Rotating Gravitational Lens?. Progress of Theoretical Physics, 2000, 104, 95-102.	2.0	34
16	Overview of KAGRA: KAGRA science. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	31
17	Negative time delay of light by a gravitational concave lens. Physical Review D, 2014, 90, .	4.7	30
18	Constraining extra gravitational wave polarizations with Advanced LIGO, Advanced Virgo, and KAGRA and upper bounds from GW170817. Physical Review D, 2019, 100 , .	4.7	26

#	Article	IF	CITATION
19	Microlensed image centroid motions by an exotic lens object with negative convergence or negative mass. Physical Review D, 2014, 89, .	4.7	25
20	Probing gravitational wave polarizations with Advanced LIGO, Advanced Virgo, and KAGRA. Physical Review D, 2018, 98, .	4.7	24
21	Gravitational lens without asymptotic flatness: Its application to Weyl gravity. Physical Review D, 2020, 102, .	4.7	23
22	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
23	The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground. Galaxies, 2022, 10, 63.	3.0	13
24	Condition for directly testing scalar modes of gravitational waves by four detectors. Physical Review D, 2020, 101, .	4.7	12
25	Iterative solutions for the gravitational lens equation in the strong deflection limit. Physical Review D, 2021, 103, .	4.7	10
26	Gravitational lens on de Sitter background. Physical Review D, 2022, 105, .	4.7	4
27	Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK). Progress of Theoretical and Experimental Physics, 2023, 2023, .	6.6	4
28	Gravitational Wave Physics and Astronomy in the nascent era. Progress of Theoretical and Experimental Physics, 0, , .	6.6	3
29	Nondivergent deflection of light around a photon sphere of a compact object. Physical Review D, 2022, 105, .	4.7	2