Karl Deisseroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2126723/publications.pdf Version: 2024-02-01

		154	232
378	106,572	156	305
papers	citations	h-index	g-index
			_
395	395	395	63294
all docs	docs citations	times ranked	citing authors

KADI DEISSEDOTH

#	Article	IF	CITATIONS
1	Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 2005, 8, 1263-1268.	14.8	4,110
2	Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 2009, 459, 698-702.	27.8	2,258
3	Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 2009, 459, 663-667.	27.8	2,250
4	Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 2011, 477, 171-178.	27.8	2,036
5	Structural and molecular interrogation of intact biological systems. Nature, 2013, 497, 332-337.	27.8	1,765
6	Optogenetics in Neural Systems. Neuron, 2011, 71, 9-34.	8.1	1,629
7	Multimodal fast optical interrogation of neural circuitry. Nature, 2007, 446, 633-639.	27.8	1,602
8	Optogenetics. Nature Methods, 2011, 8, 26-29.	19.0	1,574
9	The Development and Application of Optogenetics. Annual Review of Neuroscience, 2011, 34, 389-412.	10.7	1,567
10	Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 2010, 466, 622-626.	27.8	1,531
11	Optical Deconstruction of Parkinsonian Neural Circuitry. Science, 2009, 324, 354-359.	12.6	1,385
12	Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 2012, 484, 381-385.	27.8	1,278
13	Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 2007, 450, 420-424.	27.8	1,157
14	Natural Neural Projection Dynamics Underlying Social Behavior. Cell, 2014, 157, 1535-1551.	28.9	1,121
15	Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature, 2011, 471, 358-362.	27.8	1,073
16	Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning. Science, 2009, 324, 1080-1084.	12.6	1,064
17	Input-specific control of reward and aversion in the ventral tegmental area. Nature, 2012, 491, 212-217.	27.8	1,062
18	CREB Phosphorylation and Dephosphorylation: A Ca2+- and Stimulus Duration–Dependent Switch for Hippocampal Gene Expression. Cell, 1996, 87, 1203-1214.	28.9	1,055

#	Article	IF	CITATIONS
19	Optogenetics: 10 years of microbial opsins in neuroscience. Nature Neuroscience, 2015, 18, 1213-1225.	14.8	1,029
20	Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 2013, 493, 532-536.	27.8	961
21	Molecular and Cellular Approaches for Diversifying and Extending Optogenetics. Cell, 2010, 141, 154-165.	28.9	919
22	Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nature Protocols, 2010, 5, 439-456.	12.0	895
23	Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science, 2018, 361, .	12.6	890
24	An optical neural interface:in vivocontrol of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering, 2007, 4, S143-S156.	3.5	878
25	Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 2013, 493, 537-541.	27.8	874
26	Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature, 1999, 399, 159-162.	27.8	838
27	Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 2010, 468, 277-282.	27.8	813
28	Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neuroscience, 2010, 13, 1526-1533.	14.8	800
29	Cell Type–Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward. Science, 2010, 330, 385-390.	12.6	778
30	Astrocytes Control Breathing Through pH-Dependent Release of ATP. Science, 2010, 329, 571-575.	12.6	752
31	Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 2010, 468, 270-276.	27.8	745
32	Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 2011, 475, 377-380.	27.8	739
33	Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protocols, 2014, 9, 1682-1697.	12.0	725
34	A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 2013, 16, 966-973.	14.8	723
35	Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits. Journal of Neuroscience, 2006, 26, 10380-10386.	3.6	708
36	A skin-inspired organic digital mechanoreceptor. Science, 2015, 350, 313-316.	12.6	708

#	Article	IF	CITATIONS
37	Striatal Dopamine Release Is Triggered by Synchronized Activity in Cholinergic Interneurons. Neuron, 2012, 75, 58-64.	8.1	692
38	In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2. Neuron, 2007, 54, 205-218.	8.1	680
39	Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods, 2012, 9, 159-172.	19.0	666
40	Signaling from Synapse to Nucleus: Postsynaptic CREB Phosphorylation during Multiple Forms of Hippocampal Synaptic Plasticity. Neuron, 1996, 16, 89-101.	8.1	660
41	Ultrafast optogenetic control. Nature Neuroscience, 2010, 13, 387-392.	14.8	660
42	Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature, 2010, 465, 788-792.	27.8	659
43	Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews Neuroscience, 2012, 13, 251-266.	10.2	655
44	CLARITY for mapping the nervous system. Nature Methods, 2013, 10, 508-513.	19.0	654
45	Temporally precise in vivo control of intracellular signalling. Nature, 2009, 458, 1025-1029.	27.8	653
46	Channelrhodopsin-2 and optical control of excitable cells. Nature Methods, 2006, 3, 785-792.	19.0	641
47	Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell, 2015, 162, 635-647.	28.9	608
48	Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron, 2004, 42, 535-552.	8.1	606
49	Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods, 2011, 8, 745-752.	19.0	605
50	Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature, 1998, 392, 198-202.	27.8	603
51	Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement. Neuron, 2011, 72, 721-733.	8.1	593
52	Circuit-breakers: optical technologies for probing neural signals and systems. Nature Reviews Neuroscience, 2007, 8, 577-581.	10.2	586
53	Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa. Science, 2010, 329, 413-417.	12.6	578
54	Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 2017, 18, 222-235.	10.2	562

#	Article	IF	CITATIONS
55	Locus coeruleus and dopaminergic consolidation of everyday memory. Nature, 2016, 537, 357-362.	27.8	561
56	A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Molecular Psychiatry, 2012, 17, 537-548.	7.9	551
57	Midbrain circuits for defensive behaviour. Nature, 2016, 534, 206-212.	27.8	546
58	Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature, 2013, 496, 219-223.	27.8	543
59	Antidepressant Effect of Optogenetic Stimulation of the Medial Prefrontal Cortex. Journal of Neuroscience, 2010, 30, 16082-16090.	3.6	542
60	Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 2016, 353, 158-162.	12.6	534
61	Bi-stable neural state switches. Nature Neuroscience, 2009, 12, 229-234.	14.8	533
62	Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature, 2012, 488, 379-383.	27.8	530
63	A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge. Nature, 2012, 492, 428-432.	27.8	526
64	GABA Neurons of the VTA Drive Conditioned Place Aversion. Neuron, 2012, 73, 1173-1183.	8.1	514
65	Crystal structure of the channelrhodopsin light-gated cation channel. Nature, 2012, 482, 369-374.	27.8	503
66	Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature Neuroscience, 2013, 16, 64-70.	14.8	491
67	Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nature Neuroscience, 2008, 11, 631-633.	14.8	490
68	L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature, 1999, 401, 703-708.	27.8	486
69	Dynamics of Retrieval Strategies for Remote Memories. Cell, 2011, 147, 678-689.	28.9	481
70	Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols, 2010, 5, 247-254.	12.0	477
71	Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nature Methods, 2015, 12, 969-974.	19.0	473
72	The Microbial Opsin Family of Optogenetic Tools. Cell, 2011, 147, 1446-1457.	28.9	471

#	Article	IF	CITATIONS
73	Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19944-19949.	7.1	466
74	Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 2012, 489, 150-154.	27.8	463
75	Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors. Cell, 2015, 160, 516-527.	28.9	458
76	eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biology, 2008, 36, 129-139.	3.2	454
77	Wave optics theory and 3-D deconvolution for the light field microscope. Optics Express, 2013, 21, 25418.	3.4	452
78	Targeting and Readout Strategies for Fast Optical Neural Control <i>In Vitro</i> and <i>In Vivo</i> . Journal of Neuroscience, 2007, 27, 14231-14238.	3.6	450
79	Cortical layer–specific critical dynamics triggering perception. Science, 2019, 365, .	12.6	447
80	Targeting cells with single vectors using multiple-feature Boolean logic. Nature Methods, 2014, 11, 763-772.	19.0	427
81	Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science, 2016, 351, aac9698.	12.6	427
82	Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2808-2813.	7.1	425
83	Thalamic control of sensory selection in divided attention. Nature, 2015, 526, 705-709.	27.8	423
84	Repeated Cortico-Striatal Stimulation Generates Persistent OCD-Like Behavior. Science, 2013, 340, 1234-1239.	12.6	420
85	Cholinergic Interneurons Control Local Circuit Activity and Cocaine Conditioning. Science, 2010, 330, 1677-1681.	12.6	417
86	Gating of social reward by oxytocin in the ventral tegmental area. Science, 2017, 357, 1406-1411.	12.6	414
87	Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science, 2019, 364, .	12.6	412
88	High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the United States of America, 2011, 108, 7595-7600.	7.1	409
89	An optogenetic toolbox designed for primates. Nature Neuroscience, 2011, 14, 387-397.	14.8	400
90	Basomedial amygdala mediates top-down control of anxiety and fear. Nature, 2015, 527, 179-185.	27.8	399

#	Article	IF	CITATIONS
91	Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps. Current Biology, 2007, 17, 2105-2116.	3.9	395
92	Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer. Cell, 2015, 162, 766-779.	28.9	394
93	Prefrontal Parvalbumin Neurons in Control of Attention. Cell, 2016, 164, 208-218.	28.9	390
94	Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nature Neuroscience, 2017, 20, 176-188.	14.8	384
95	Next-generation probes, particles, and proteins for neural interfacing. Science Advances, 2017, 3, e1601649.	10.3	377
96	Projections from neocortex mediate top-down control of memory retrieval. Nature, 2015, 526, 653-659.	27.8	376
97	Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature, 2016, 537, 97-101.	27.8	362
98	Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nature Methods, 2016, 13, 325-328.	19.0	359
99	Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nature Neuroscience, 2001, 4, 151-158.	14.8	356
100	Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nature Communications, 2015, 6, 7062.	12.8	356
101	Structure-Guided Transformation of Channelrhodopsin into a Light-Activated Chloride Channel. Science, 2014, 344, 420-424.	12.6	354
102	High-Speed Imaging Reveals Neurophysiological Links to Behavior in an Animal Model of Depression. Science, 2007, 317, 819-823.	12.6	349
103	A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron, 2019, 101, 133-151.e7.	8.1	349
104	High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8143-8148.	7.1	347
105	Closed-Loop and Activity-Guided Optogenetic Control. Neuron, 2015, 86, 106-139.	8.1	328
106	Nanotools for Neuroscience and Brain Activity Mapping. ACS Nano, 2013, 7, 1850-1866.	14.6	323
107	Optogenetic Interrogation of Dopaminergic Modulation of the Multiple Phases of Reward-Seeking Behavior. Journal of Neuroscience, 2011, 31, 10829-10835.	3.6	322
108	Signaling from synapse to nucleus: the logic behind the mechanisms. Current Opinion in Neurobiology, 2003, 13, 354-365.	4.2	321

#	Article	IF	CITATIONS
109	All-Optical Interrogation of Neural Circuits. Journal of Neuroscience, 2015, 35, 13917-13926.	3.6	320
110	Clobal Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron, 2017, 94, 891-907.e6.	8.1	316
111	Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nature Neuroscience, 2014, 17, 1816-1824.	14.8	315
112	Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nature Neuroscience, 2014, 17, 577-585.	14.8	314
113	Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nature Methods, 2012, 9, 1171-1179.	19.0	299
114	Synaptic Encoding of Fear Extinction in mPFC-amygdala Circuits. Neuron, 2013, 80, 1491-1507.	8.1	298
115	Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. Cell, 2016, 165, 1776-1788.	28.9	295
116	A Unique Population of Ventral Tegmental Area Neurons Inhibits the Lateral Habenula to Promote Reward. Neuron, 2013, 80, 1039-1053.	8.1	290
117	Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nature Neuroscience, 2018, 21, 1260-1271.	14.8	283
118	Clutamatergic Signaling by Mesolimbic Dopamine Neurons in the Nucleus Accumbens. Journal of Neuroscience, 2010, 30, 7105-7110.	3.6	280
119	Competition between engrams influences fear memory formation and recall. Science, 2016, 353, 383-387.	12.6	278
120	Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12692-12697.	7.1	269
121	A Major External Source of Cholinergic Innervation of the Striatum and Nucleus Accumbens Originates in the Brainstem. Journal of Neuroscience, 2014, 34, 4509-4518.	3.6	267
122	Ca2+-dependent regulation in neuronal gene expression. Current Opinion in Neurobiology, 1997, 7, 419-429.	4.2	263
123	In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2726-2731.	7.1	258
124	SNCA Triplication Parkinson's Patient's iPSC-derived DA Neurons Accumulate α-Synuclein and Are Susceptible to Oxidative Stress. PLoS ONE, 2011, 6, e26159.	2.5	257
125	Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson's disease model. Nature Biotechnology, 2015, 33, 204-209.	17.5	256
126	Dopaminergic dynamics underlying sex-specific cocaine reward. Nature Communications, 2017, 8, 13877.	12.8	256

#	Article	IF	CITATIONS
127	Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science, 2019, 364, 253.	12.6	256
128	Two-photon optogenetics of dendritic spines and neural circuits. Nature Methods, 2012, 9, 1202-1205.	19.0	255
129	Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in <i>CNTNAP2</i> -deficient mice. Science Translational Medicine, 2017, 9, .	12.4	252
130	A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron, 2017, 93, 822-839.e6.	8.1	250
131	Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3535-3540.	7.1	246
132	Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nature Neuroscience, 2017, 20, 1602-1611.	14.8	246
133	Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons. Current Biology, 2008, 18, 1133-1137.	3.9	235
134	Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 2017, 357, 1149-1155.	12.6	233
135	Sleep Homeostasis Modulates Hypocretin-Mediated Sleep-to-Wake Transitions. Journal of Neuroscience, 2009, 29, 10939-10949.	3.6	232
136	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	12.6	230
137	Optogenetic control of epileptiform activity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12162-12167.	7.1	225
138	Activation of Corticostriatal Circuitry Relieves Chronic Neuropathic Pain. Journal of Neuroscience, 2015, 35, 5247-5259.	3.6	224
139	Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves InÂVivo. Neuron, 2013, 77, 1136-1150.	8.1	217
140	Optogenetic and Potassium Channel Gene Therapy in a Rodent Model of Focal Neocortical Epilepsy. Science Translational Medicine, 2012, 4, 161ra152.	12.4	216
141	SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function. Cell, 2015, 163, 1796-1806.	28.9	213
142	The form and function of channelrhodopsin. Science, 2017, 357, .	12.6	212
143	Optogenetic inhibition of cocaine seeking in rats. Addiction Biology, 2013, 18, 50-53.	2.6	208
144	Endocannabinoid Modulation of Orbitostriatal Circuits Gates Habit Formation. Neuron, 2016, 90, 1312-1324.	8.1	208

#	Article	IF	CITATIONS
145	Active Expiration Induced by Excitation of Ventral Medulla in Adult Anesthetized Rats. Journal of Neuroscience, 2011, 31, 2895-2905.	3.6	204
146	An interactive framework for whole-brain maps at cellular resolution. Nature Neuroscience, 2018, 21, 139-149.	14.8	204
147	Leptin regulates the reward value of nutrient. Nature Neuroscience, 2011, 14, 1562-1568.	14.8	201
148	Hypothalamic control of male aggression-seeking behavior. Nature Neuroscience, 2016, 19, 596-604.	14.8	201
149	Rational Engineering of XCaMPs, a Multicolor GECI Suite for InÂVivo Imaging of Complex Brain Circuit Dynamics. Cell, 2019, 177, 1346-1360.e24.	28.9	199
150	Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 822-829.	7.1	197
151	Synaptic Activity Unmasks Dopamine D2 Receptor Modulation of a Specific Class of Layer V Pyramidal Neurons in Prefrontal Cortex. Journal of Neuroscience, 2012, 32, 4959-4971.	3.6	194
152	Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nature Biotechnology, 2014, 32, 274-278.	17.5	191
153	Chronic Optogenetic Activation Augments AÎ ² Pathology in a Mouse Model of Alzheimer Disease. Cell Reports, 2015, 11, 859-865.	6.4	186
154	Critical Dependence of cAMP Response Element-Binding Protein Phosphorylation on L-Type Calcium Channels Supports a Selective Response to EPSPs in Preference to Action Potentials. Journal of Neuroscience, 2000, 20, 266-273.	3.6	185
155	A neuronal circuit for activating descending modulation of neuropathic pain. Nature Neuroscience, 2019, 22, 1659-1668.	14.8	185
156	The Brain Activity Map. Science, 2013, 339, 1284-1285.	12.6	181
157	The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140164.	4.0	179
158	Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature, 2016, 531, 642-646.	27.8	178
159	Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biology, 2008, 36, 141-154.	3.2	176
160	Orderly recruitment of motor units under optical control in vivo. Nature Medicine, 2010, 16, 1161-1165.	30.7	176
161	Neuronal Dynamics Regulating Brain and Behavioral State Transitions. Cell, 2019, 177, 970-985.e20.	28.9	171
162	Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5584-92.	7.1	170

#	Article	IF	CITATIONS
163	Optical Neural Interfaces. Annual Review of Biomedical Engineering, 2014, 16, 103-129.	12.3	170
164	Optogenetic neuronal stimulation promotes functional recovery after stroke. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12913-12918.	7.1	169
165	5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature, 2018, 560, 589-594.	27.8	169
166	Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature, 2019, 565, 645-649.	27.8	165
167	<i>Dlx5</i> and <i>Dlx6</i> Regulate the Development of Parvalbumin-Expressing Cortical Interneurons. Journal of Neuroscience, 2010, 30, 5334-5345.	3.6	162
168	Left–right dissociation of hippocampal memory processes in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15238-15243.	7.1	161
169	A new mode of corticothalamic transmission revealed in the Gria4â^'/â^' model of absence epilepsy. Nature Neuroscience, 2011, 14, 1167-1173.	14.8	159
170	The central amygdala controls learning in the lateral amygdala. Nature Neuroscience, 2017, 20, 1680-1685.	14.8	159
171	Circuit dynamics of adaptive and maladaptive behaviour. Nature, 2014, 505, 309-317.	27.8	158
172	Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18932-18937.	7.1	152
173	Medial prefrontal D1 dopamine neurons control food intake. Nature Neuroscience, 2014, 17, 248-253.	14.8	152
174	Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms. Cell Reports, 2017, 19, 2130-2142.	6.4	150
175	Enhancing the performance of the light field microscope using wavefront coding. Optics Express, 2014, 22, 24817.	3.4	149
176	Targeting Neural Circuits. Cell, 2016, 165, 524-534.	28.9	148
177	Color-tuned Channelrhodopsins for Multiwavelength Optogenetics. Journal of Biological Chemistry, 2012, 287, 31804-31812.	3.4	147
178	Ancestral Circuits for the Coordinated Modulation of Brain State. Cell, 2017, 171, 1411-1423.e17.	28.9	145
179	Deep posteromedial cortical rhythm in dissociation. Nature, 2020, 586, 87-94.	27.8	145
180	Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell, 2016, 164, 1136-1150.	28.9	143

#	Article	IF	CITATIONS
181	Hypothalamic Neurotensin Projections Promote Reward by Enhancing Glutamate Transmission in the VTA. Journal of Neuroscience, 2013, 33, 7618-7626.	3.6	140
182	Deep brain optogenetics without intracranial surgery. Nature Biotechnology, 2021, 39, 161-164.	17.5	139
183	Optogenetic Control of Targeted Peripheral Axons in Freely Moving Animals. PLoS ONE, 2013, 8, e72691.	2.5	138
184	Challenges and Opportunities for Next-Generation Intracortically Based Neural Prostheses. IEEE Transactions on Biomedical Engineering, 2011, 58, 1891-1899.	4.2	137
185	Brain-wide Electrical Spatiotemporal Dynamics Encode Depression Vulnerability. Cell, 2018, 173, 166-180.e14.	28.9	135
186	Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science, 2020, 367, 1372-1376.	12.6	132
187	Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nature Biomedical Engineering, 2017, 1, 796-806.	22.5	131
188	Fast near-whole–brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biology, 2019, 17, e2006732.	5.6	130
189	Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system. Science Translational Medicine, 2016, 8, 337rv5.	12.4	129
190	Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms for Restraint of Reward Seeking. Cell, 2017, 170, 1013-1027.e14.	28.9	129
191	Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nature Communications, 2016, 7, 11475.	12.8	127
192	Multiplexed Intact-Tissue Transcriptional Analysis at Cellular Resolution. Cell, 2016, 164, 792-804.	28.9	125
193	Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs. ENeuro, 2015, 2, ENEURO.0022-15.2015.	1.9	123
194	Developmental Dysfunction of VIP Interneurons Impairs Cortical Circuits. Neuron, 2017, 95, 884-895.e9.	8.1	123
195	Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science, 2020, 370, .	12.6	123
196	Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nature Neuroscience, 2016, 19, 1025-1033.	14.8	122
197	Dynamic Multiphosphorylation Passwords for Activity-Dependent Gene Expression. Neuron, 2002, 34, 179-182.	8.1	121
198	Long-Range GABAergic Inputs Regulate Neural Stem Cell Quiescence and Control Adult Hippocampal Neurogenesis. Cell Stem Cell, 2017, 21, 604-617.e5.	11.1	119

#	Article	IF	CITATIONS
199	Positive Reinforcement Mediated by Midbrain Dopamine Neurons Requires D1 and D2 Receptor Activation in the Nucleus Accumbens. PLoS ONE, 2014, 9, e94771.	2.5	119
200	Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice. Molecular Psychiatry, 2015, 20, 1406-1419.	7.9	117
201	Cerebellar Purkinje cell activity drives motor learning. Nature Neuroscience, 2013, 16, 1734-1736.	14.8	116
202	Engineering Approaches to Illuminating Brain Structure and Dynamics. Neuron, 2013, 80, 568-577.	8.1	116
203	The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity. Journal of Neuroscience, 2015, 35, 7715-7726.	3.6	116
204	Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell, 2021, 184, 741-758.e17.	28.9	115
205	Dendritic Inhibition Provided by Interneuron-Specific Cells Controls the Firing Rate and Timing of the Hippocampal Feedback Inhibitory Circuitry. Journal of Neuroscience, 2014, 34, 4534-4547.	3.6	114
206	Neural signatures of sleep in zebrafish. Nature, 2019, 571, 198-204.	27.8	114
207	Differential Modulation of Excitatory and Inhibitory Striatal Synaptic Transmission by Histamine. Journal of Neuroscience, 2011, 31, 15340-15351.	3.6	113
208	Hierarchical neural architecture underlying thirst regulation. Nature, 2018, 555, 204-209.	27.8	113
209	Prefrontal D1 dopamine signaling is required for temporal control. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20726-20731.	7.1	112
210	GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons. Neuron, 2013, 79, 917-931.	8.1	111
211	A hypothalamus-habenula circuit controls aversion. Molecular Psychiatry, 2019, 24, 1351-1368.	7.9	111
212	Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode. Neuron, 2017, 93, 194-210.	8.1	107
213	Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nature Neuroscience, 2020, 23, 217-228.	14.8	107
214	Hemisphere-specific optogenetic stimulation reveals left-right asymmetry of hippocampal plasticity. Nature Neuroscience, 2011, 14, 1413-1415.	14.8	106
215	Multiple Sources of Striatal Inhibition Are Differentially Affected in Huntington's Disease Mouse Models. Journal of Neuroscience, 2013, 33, 7393-7406.	3.6	106
216	Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements. Neuron, 2015, 88, 367-377.	8.1	106

#	Article	IF	CITATIONS
217	In Vivo Fiber Photometry Reveals Signature of Future Stress Susceptibility in Nucleus Accumbens. Neuropsychopharmacology, 2018, 43, 255-263.	5.4	105
218	A role for circuit homeostasis in adult neurogenesis. Trends in Neurosciences, 2005, 28, 653-660.	8.6	103
219	Direct excitation of parvalbuminâ€positive interneurons by M ₁ muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. Journal of Physiology, 2014, 592, 3463-3494.	2.9	102
220	Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature, 2017, 542, 232-236.	27.8	102
221	Astrocyte Intermediaries of Septal Cholinergic Modulation in the Hippocampus. Neuron, 2016, 90, 853-865.	8.1	100
222	An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques. Neuron, 2020, 107, 38-51.e8.	8.1	99
223	Drug-Driven AMPA Receptor Redistribution Mimicked by Selective Dopamine Neuron Stimulation. PLoS ONE, 2010, 5, e15870.	2.5	98
224	Manipulating a "Cocaine Engram―in Mice. Journal of Neuroscience, 2014, 34, 14115-14127.	3.6	98
225	Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism. Cell Reports, 2015, 13, 657-666.	6.4	98
226	Dysregulation of Prefrontal Cortex-Mediated Slow-Evolving Limbic Dynamics Drives Stress-Induced Emotional Pathology. Neuron, 2016, 91, 439-452.	8.1	98
227	Controlling the Brain with Light. Scientific American, 2010, 303, 48-55.	1.0	97
228	Arc/Arg3.1 Is a Postsynaptic Mediator of Activity-Dependent Synapse Elimination in the Developing Cerebellum. Neuron, 2013, 78, 1024-1035.	8.1	96
229	Induced chromosome deletions cause hypersociability and other features of Williams–Beuren syndrome in mice. EMBO Molecular Medicine, 2009, 1, 50-65.	6.9	95
230	Hydrogel-Tissue Chemistry: Principles and Applications. Annual Review of Biophysics, 2018, 47, 355-376.	10.0	95
231	Functional Integration of Grafted Neural Stem Cell-Derived Dopaminergic Neurons Monitored by Optogenetics in an In Vitro Parkinson Model. PLoS ONE, 2011, 6, e17560.	2.5	94
232	A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. Journal of Neuroscience Methods, 2013, 219, 142-154.	2.5	94
233	Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature, 2017, 549, 345-350.	27.8	94
234	Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature, 2018, 561, 343-348.	27.8	93

#	Article	IF	CITATIONS
235	Comprehensive Dual- and Triple-Feature Intersectional Single-Vector Delivery of Diverse Functional Payloads to Cells of Behaving Mammals. Neuron, 2020, 107, 836-853.e11.	8.1	93
236	InÂVivo Optogenetic Stimulation of Neocortical Excitatory Neurons Drives Brain-State-Dependent Inhibition. Current Biology, 2011, 21, 1593-1602.	3.9	92
237	Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Central Science, 2019, 5, 1884-1891.	11.3	92
238	Multiscale Computational Models for Optogenetic Control of Cardiac Function. Biophysical Journal, 2011, 101, 1326-1334.	0.5	91
239	Neuronal filtering of multiplexed odour representations. Nature, 2011, 479, 493-498.	27.8	91
240	Mesolimbic Dopamine Dynamically Tracks, and Is Causally Linked to, Discrete Aspects of Value-Based Decision Making. Biological Psychiatry, 2015, 77, 903-911.	1.3	91
241	CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions. Scientific Reports, 2017, 7, 44810.	3.3	91
242	Calmodulin priming: Nuclear translocation of a calmodulin complex and the memory of prior neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15342-15347.	7.1	90
243	The best way forward. Nature, 2014, 515, 200-201.	27.8	90
244	Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nature Neuroscience, 2015, 18, 962-964.	14.8	86
245	Tracking Stem Cell Differentiation in the Setting of Automated Optogenetic Stimulation. Stem Cells, 2011, 29, 78-88.	3.2	85
246	Posttraining optogenetic manipulations of basolateral amygdala activity modulate consolidation of inhibitory avoidance memory in rats. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3597-3602.	7.1	85
247	Functional Control of Transplantable Human ESC-Derived Neurons Via Optogenetic Targeting. Stem Cells, 2010, 28, 2008-2016.	3.2	84
248	Optogenetic Activation of an Inhibitory Network Enhances Feedforward Functional Connectivity in Auditory Cortex. Neuron, 2013, 80, 1066-1076.	8.1	79
249	Recent advances in optogenetics and pharmacogenetics. Brain Research, 2013, 1511, 1-5.	2.2	79
250	An Open Resource for Non-human Primate Optogenetics. Neuron, 2020, 108, 1075-1090.e6.	8.1	79
251	Optogenetics and Psychiatry: Applications, Challenges, and Opportunities. Biological Psychiatry, 2012, 71, 1030-1032.	1.3	77
252	Illuminating circuitry relevant to psychiatric disorders with optogenetics. Current Opinion in Neurobiology, 2015, 30, 9-16.	4.2	76

#	Article	IF	CITATIONS
253	Brain-Derived Neurotrophic Factor in the Mesolimbic Reward Circuitry Mediates Nociception in Chronic Neuropathic Pain. Biological Psychiatry, 2017, 82, 608-618.	1.3	75
254	Optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16287-16287.	7.1	74
255	Optogenetic and chemogenetic strategies for sustained inhibition of pain. Scientific Reports, 2016, 6, 30570.	3.3	72
256	Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell, 2022, 185, 672-689.e23.	28.9	72
257	Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. Neuron, 2020, 106, 1026-1043.e9.	8.1	70
258	Ventromedial Prefrontal Cortex Pyramidal Cells Have a Temporal Dynamic Role in Recall and Extinction of Cocaine-Associated Memory. Journal of Neuroscience, 2013, 33, 18225-18233.	3.6	68
259	Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature, 2018, 561, 349-354.	27.8	67
260	Coordinated Reductions in Excitatory Input to the Nucleus Accumbens Underlie Food Consumption. Neuron, 2018, 99, 1260-1273.e4.	8.1	67
261	Light microscopy mapping of connections in the intact brain. Trends in Cognitive Sciences, 2013, 17, 596-599.	7.8	66
262	Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics. Neurophotonics, 2016, 4, 1.	3.3	66
263	Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nature Communications, 2019, 10, 5504.	12.8	66
264	Multiple convergent hypothalamus–brainstem circuits drive defensive behavior. Nature Neuroscience, 2020, 23, 959-967.	14.8	66
265	Dopamine Modulation of Prefrontal Cortex Activity Is Manifold and Operates at Multiple Temporal and Spatial Scales. Cell Reports, 2019, 27, 99-114.e6.	6.4	65
266	Optogenetic Inhibition of Dorsal Medial Prefrontal Cortex Attenuates Stress-Induced Reinstatement of Palatable Food Seeking in Female Rats. Journal of Neuroscience, 2013, 33, 214-226.	3.6	64
267	Phasic Dopamine Signals in the Nucleus Accumbens that Cause Active Avoidance Require Endocannabinoid Mobilization in the Midbrain. Current Biology, 2018, 28, 1392-1404.e5.	3.9	64
268	Next-generation transgenic mice for optogenetic analysis of neural circuits. Frontiers in Neural Circuits, 2013, 7, 160.	2.8	62
269	Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7291-7296.	7.1	62
270	InÂVivo Interrogation of Spinal Mechanosensory Circuits. Cell Reports, 2016, 17, 1699-1710.	6.4	62

#	Article	IF	CITATIONS
271	Distinct Signaling by Ventral Tegmental Area Glutamate, GABA, and Combinatorial Glutamate-GABA Neurons in Motivated Behavior. Cell Reports, 2020, 32, 108094.	6.4	60
272	Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons. Neuropsychopharmacology, 2017, 42, 615-627.	5.4	59
273	Activity in grafted human iPS cell–derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9094-9100.	7.1	59
274	Synaptic Plasticity: A molecular mechanism for metaplasticity. Current Biology, 1995, 5, 1334-1338.	3.9	58
275	Optogenetic Delay of Status Epilepticus Onset in an In Vivo Rodent Epilepsy Model. PLoS ONE, 2013, 8, e62013.	2.5	58
276	Dopaminergic Dynamics Contributing to Social Behavior. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 221-227.	1.1	58
277	Cortical Observation by Synchronous Multifocal Optical Sampling Reveals Widespread Population Encoding of Actions. Neuron, 2020, 107, 351-367.e19.	8.1	56
278	Genetically identified amygdala–striatal circuits for valence-specific behaviors. Nature Neuroscience, 2021, 24, 1586-1600.	14.8	56
279	Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing. Optics Express, 2015, 23, 32573.	3.4	55
280	Glutamatergic Neurotransmission between the C1 Neurons and the Parasympathetic Preganglionic Neurons of the Dorsal Motor Nucleus of the Vagus. Journal of Neuroscience, 2013, 33, 1486-1497.	3.6	54
281	Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10819-E10828.	7.1	54
282	The separate effects of lipids and proteins on brain MRI contrast revealed through tissue clearing. NeuroImage, 2017, 156, 412-422.	4.2	53
283	High-speed interferometric imaging reveals dynamics of neuronal deformation during the action potential. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10278-10285.	7.1	53
284	Mapping Brain-Wide Afferent Inputs of Parvalbumin-Expressing GABAergic Neurons in Barrel Cortex Reveals Local and Long-Range Circuit Motifs. Cell Reports, 2019, 28, 3450-3461.e8.	6.4	52
285	A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. Cell, 2022, 185, 654-671.e22.	28.9	52
286	Place field assembly distribution encodes preferred locations. PLoS Biology, 2017, 15, e2002365.	5.6	51
287	A community-developed open-source computational ecosystem for big neuro data. Nature Methods, 2018, 15, 846-847.	19.0	51
288	Optogenetics Reveal Delayed Afferent Synaptogenesis on Grafted Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors. Stem Cells, 2014, 32, 3088-3098.	3.2	49

#	Article	IF	CITATIONS
289	A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement. Cell, 2020, 183, 211-227.e20.	28.9	49
290	A fourth generation of neuroanatomical tracing techniques: Exploiting the offspring of genetic engineering. Journal of Neuroscience Methods, 2014, 235, 331-348.	2.5	48
291	Ca _V 3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy. Genes and Development, 2015, 29, 1535-1551.	5.9	48
292	Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1149-58.	7.1	47
293	Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Scientific Reports, 2019, 9, 3607.	3.3	46
294	Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Scientific Reports, 2019, 9, 17874.	3.3	46
295	Integration of light-controlled neuronal firing and fast circuit imaging. Current Opinion in Neurobiology, 2007, 17, 587-592.	4.2	45
296	The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces. Experimental Neurology, 2017, 287, 437-451.	4.1	45
297	Neuronal activity regulates neurotransmitter switching in the adult brain following light-induced stress. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5064-5071.	7.1	45
298	A neural circuit state change underlying skilled movements. Cell, 2021, 184, 3731-3747.e21.	28.9	45
299	Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiology of Disease, 2014, 65, 133-141.	4.4	44
300	Hippocampal ââ,¬Å"cholinergic interneuronsââ,¬Â•visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Frontiers in Synaptic Neuroscience, 2015, 7, 4.	2.5	44
301	Self-Tracking Energy Transfer for Neural Stimulation in Untethered Mice. Physical Review Applied, 2015, 4, .	3.8	41
302	A Molecular Calcium Integrator Reveals a Striatal Cell Type Driving Aversion. Cell, 2020, 183, 2003-2019.e16.	28.9	40
303	Structural Model of Channelrhodopsin. Journal of Biological Chemistry, 2012, 287, 7456-7466.	3.4	39
304	Optogenetics and the Circuit Dynamics of Psychiatric Disease. JAMA - Journal of the American Medical Association, 2015, 313, 2019.	7.4	39
305	Sustained Attentional States Require Distinct Temporal Involvement of the Dorsal and Ventral Medial Prefrontal Cortex. Frontiers in Neural Circuits, 2016, 10, 70.	2.8	39
306	Optogenetic Stimulation of Neural Grafts Enhances Neurotransmission and Downregulates the Inflammatory Response in Experimental Stroke Model. Cell Transplantation, 2016, 25, 1371-1380.	2.5	39

#	Article	IF	CITATIONS
307	Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9489-E9498.	7.1	39
308	Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nature Communications, 2021, 12, 3689.	12.8	38
309	Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: Effects on cortical physiology. Epilepsia, 2015, 56, e198-e202.	5.1	37
310	Nucleus Accumbens-Specific Interventions in RGS9-2 Activity Modulate Responses to Morphine. Neuropsychopharmacology, 2014, 39, 1968-1977.	5.4	36
311	Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy. Epilepsia, 2016, 57, 977-983.	5.1	36
312	Frequency-Dependent, Cell Type-Divergent Signaling in the Hippocamposeptal Projection. Journal of Neuroscience, 2014, 34, 11769-11780.	3.6	35
313	Basal Forebrain Parvalbumin Neurons Mediate Arousals from Sleep Induced by Hypercarbia or Auditory Stimuli. Current Biology, 2020, 30, 2379-2385.e4.	3.9	35
314	Pontomesencephalic Tegmental Afferents to VTA Non-dopamine Neurons Are Necessary for Appetitive Pavlovian Learning. Cell Reports, 2016, 16, 2699-2710.	6.4	34
315	Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening. PLoS ONE, 2015, 10, e0131094.	2.5	33
316	Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Scientific Reports, 2017, 7, 5899.	3.3	33
317	Multimodal characterization of the human nucleus accumbens. NeuroImage, 2019, 198, 137-149.	4.2	33
318	Neural correlates of ingroup bias for prosociality in rats. ELife, 2021, 10, .	6.0	33
319	Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins. Cell Reports, 2021, 37, 109975.	6.4	33
320	High-Frequency Hippocampal Oscillations Activated by Optogenetic Stimulation of Transplanted Human ESC-Derived Neurons. Journal of Neuroscience, 2012, 32, 15837-15842.	3.6	32
321	Optical inhibition of motor nerve and muscle activity <i>in vivo</i> . Muscle and Nerve, 2013, 47, 916-921.	2.2	32
322	Muscarinic excitation of parvalbuminâ€positive interneurons contributes to the severity of pilocarpineâ€induced seizures. Epilepsia, 2015, 56, 297-309.	5.1	31
323	Maximally selective single-cell target for circuit control in epilepsy models. Neuron, 2021, 109, 2556-2572.e6.	8.1	31
324	Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron, 2021, 109, 3823-3837.e6.	8.1	31

#	Article	IF	CITATIONS
325	Excitation of Diverse Classes of Cholecystokinin Interneurons in the Basal Amygdala Facilitates Fear Extinction. ENeuro, 2019, 6, ENEURO.0220-19.2019.	1.9	30
326	Expanding the optogenetics toolkit. Science, 2015, 349, 590-591.	12.6	29
327	A radial axis defined by Semaphorin to Neuropilin signaling controls pancreatic islet morphogenesis. Development (Cambridge), 2017, 144, 3744-3754.	2.5	29
328	Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories. PLoS ONE, 2016, 11, e0161655.	2.5	29
329	Supramammillary regulation of locomotion and hippocampal activity. Science, 2021, 374, 1492-1496.	12.6	29
330	Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys. Scientific Reports, 2018, 8, 6775.	3.3	28
331	Illuminating next-generation brain therapies. Nature Neuroscience, 2016, 19, 414-416.	14.8	27
332	Striosomes Mediate Value-Based Learning Vulnerable in Age and a Huntington's Disease Model. Cell, 2020, 183, 918-934.e49.	28.9	27
333	Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Molecular Psychiatry, 2021, 26, 3461-3475.	7.9	26
334	GABA Excitation in the Adult Brain: A Mechanism for Excitation- Neurogenesis Coupling. Neuron, 2005, 47, 775-777.	8.1	25
335	A Guide to Creating and Testing New INTRSECT Constructs. Current Protocols in Neuroscience, 2017, 80, 4.39.1-4.39.24.	2.6	25
336	Selective filtering of excitatory inputs to nucleus accumbens by dopamine and serotonin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
337	Prefrontal cortex neuronal ensembles encoding fear drive fear expression during long-term memory retrieval. Scientific Reports, 2019, 9, 10709.	3.3	22
338	Manipulation of an Innate Escape Response in Drosophila: Photoexcitation of acj6 Neurons Induces the Escape Response. PLoS ONE, 2009, 4, e5100.	2.5	20
339	Optical suppression of drug-evoked phasic dopamine release. Frontiers in Neural Circuits, 2014, 8, 114.	2.8	20
340	Comparison of diffusion MRI and CLARITY fiber orientation estimates in both gray and white matter regions of human and primate brain. NeuroImage, 2021, 228, 117692.	4.2	20
341	An Implantable Optical Stimulation Delivery System for Actuating an Excitable Biosubstrate. IEEE Journal of Solid-State Circuits, 2011, 46, 321-332.	5.4	19
342	When the electricity (and the lights) go out: transient changes in excitability. Nature Neuroscience, 2012, 15, 1058-1060.	14.8	18

#	Article	IF	CITATIONS
343	Excitatory synapses and gap junctions cooperate to improve Pv neuronal burst firing and cortical social cognition in Shank2-mutant mice. Nature Communications, 2021, 12, 5116.	12.8	18
344	Photothermal Genetic Engineering. ACS Nano, 2012, 6, 7548-7552.	14.6	15
345	Altered profile of basket cell afferent synapses in hyperâ€excitable dentate gyrus revealed by optogenetic and twoâ€pathway stimulations. European Journal of Neuroscience, 2012, 36, 1971-1983.	2.6	15
346	Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. Journal of Neuroscience, 2021, 41, 4840-4849.	3.6	15
347	Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics. Neurophotonics, 2019, 6, 1.	3.3	15
348	Controlling Neuronal Activity. American Journal of Psychiatry, 2008, 165, 562-562.	7.2	11
349	Activation of a novel p70 S6 kinase 1-dependent intracellular cascade in the basolateral nucleus of the amygdala is required for the acquisition of extinction memory. Molecular Psychiatry, 2018, 23, 1394-1401.	7.9	11
350	CloudReg: automatic terabyte-scale cross-modal brain volume registration. Nature Methods, 2021, 18, 845-846.	19.0	11
351	Quantitative validation of immunofluorescence and lectin staining using reduced CLARITY acrylamide formulations. Brain Structure and Function, 2018, 223, 987-999.	2.3	9
352	Scale-Invariant Visual Capabilities Explained by Topographic Representations of Luminance and Texture in Primate V1. Neuron, 2018, 100, 1504-1512.e4.	8.1	8
353	From microbial membrane proteins to the mysteries of emotion. Cell, 2021, 184, 5279-5285.	28.9	8
354	Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot075598.	0.3	7
355	A Look Inside the Brain. Scientific American, 2016, 315, 30-37.	1.0	7
356	Optical and chemical discoveries recognized for impact on biology and psychiatry. EMBO Reports, 2017, 18, 859-860.	4.5	7
357	LSPS/Optogenetics to Improve Synaptic Connectivity Mapping: Unmasking the Role of Basket Cell-Mediated Feedforward Inhibition. ENeuro, 2016, 3, ENEURO.0142-15.2016.	1.9	7
358	Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Molecular Psychiatry, 2022, 27, 3777-3793.	7.9	7
359	In search of lost time. Nature, 2017, 542, 173-174.	27.8	6
360	An uncommon neuronal class conveys visual signals from rods and cones to retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104884118.	7.1	6

#	Article	IF	CITATIONS
361	Similar neural and perceptual masking effects of low-power optogenetic stimulation in primate V1. ELife, 2022, 11, .	6.0	6
362	Genetically encoded voltage sensor goes live. Nature Biotechnology, 2013, 31, 994-995.	17.5	5
363	Two eARCHT3.0 Lines for Optogenetic Silencing of Dopaminergic and Serotonergic Neurons. Frontiers in Neural Circuits, 2019, 13, 4.	2.8	5
364	Septohippocampal transmission from parvalbumin-positive neurons features rapid recovery from synaptic depression. Scientific Reports, 2021, 11, 2117.	3.3	4
365	Lee et al. reply. Nature, 2010, 468, E4-E5.	27.8	3
366	Rapid High-resolution Brain Mapping with CLARITY Optimized Light Sheet Microscopy (COLM). Microscopy and Microanalysis, 2015, 21, 717-718.	0.4	2
367	Brain Circuit Dynamics. American Journal of Psychiatry, 2008, 165, 800-800.	7.2	1
368	Optogenetic investigation of neural circuits underlying brain disease in animal models. , 0, .		1
369	Threeâ€dimensional in situ sequencing of single cells in intact tissue. FASEB Journal, 2019, 33, 221.3.	0.5	1
370	Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit. Molecular Psychiatry, 2022, , .	7.9	1
371	Study of the Circuitry of Nucleus Accumbens and its Effect on Addiction by Optogenetic Methods. Neurosurgery, 2010, 67, 557.	1.1	0
372	1PT128 Crystal Structure of a light-gated cation channel, channeirhodopsin(The 50th Annual Meeting) Tj ETQq0	0 0 rgBT /	Overlock 10
373	21. Role of BDNF in Regulating Sensitive Periods for Fear Regulation. Biological Psychiatry, 2017, 81, S9-S10.	1.3	0
374	Extinction of auditory threat memory triggers activation of p70 S6 kinase 1 in the basolateral nucleus of the amygdala. Molecular Psychiatry, 2018, 23, 1393-1393.	7.9	0
375	Identification of Parallel Functional Domains in the Paraventricular Nucleus of the Thalamus. Biological Psychiatry, 2020, 87, S7.	1.3	0
376	Form and function in the brain. Lancet Neurology, The, 2021, 20, 508.	10.2	0
377	Linking real-time activity with detailed anatomy at cellular resolution across the vertebrate brain. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PL-2.	0.0	0
378	Investigation of Nociceptive Endogenous Opioid Dynamics in the Periaqueductal Gray. Journal of Pain, 2022, 23, 18.	1.4	0