
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2125337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4and CuCr2O4Spinel Type Catalysts. Journal of Catalysis, 1998, 177, 82-95.	6.2	241
2	Effect of Phase Composition of the Oxidic Precursor on the HDS Activity of the Sulfided Molybdates of Fe(II), Co(II), and Ni(II). Journal of Catalysis, 1997, 171, 467-475.	6.2	153
3	Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Applied Catalysis B: Environmental, 2007, 70, 461-469.	20.2	141
4	Electronic Properties and Phase Transformations in CoMoO4and NiMoO4:Â XANES and Time-Resolved Synchrotron XRD Studies. Journal of Physical Chemistry B, 1998, 102, 1347-1355.	2.6	138
5	Thermal and reductive decomposition of ammonium thiomolybdates. Thermochimica Acta, 1995, 256, 325-338.	2.7	130
6	Phase transformations and electronic properties in mixed-metal oxides: Experimental and theoretical studies on the behavior of NiMoO4 and MgMoO4. Journal of Chemical Physics, 2000, 112, 935-945.	3.0	111
7	Reaction of H2and H2S with CoMoO4and NiMoO4:Â TPR, XANES, Time-Resolved XRD, and Molecular-Orbital Studies. Journal of Physical Chemistry B, 1999, 103, 770-781.	2.6	110
8	Reducibility of Ni-Mo/Al2O3 Catalysts: A TPR Study. Journal of Catalysis, 1993, 139, 540-550.	6.2	107
9	Comparative study of alumina-supported CuO and CuCr2O4 as catalysts for CO oxidation. Journal of Catalysis, 1986, 102, 172-179.	6.2	88
10	Temperature-programmed reduction of Ni-Mo oxides. Journal of Materials Science, 1989, 24, 425-431.	3.7	88
11	Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot. Combustion and Flame, 2016, 172, 1-12.	5.2	74
12	Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophene hydrodesulfurization. Fuel, 2013, 110, 249-258.	6.4	65
13	Nickel molybdate as precursor of HDS catalysts: Effect of phase composition. Catalysis Letters, 1994, 26, 329-337.	2.6	64
14	Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract. Biotechnology Reports (Amsterdam, Netherlands), 2014, 4, 21-29.	4.4	63
15	CO2 corrosion resistance of carbon steel in relation with microstructure changes. Materials Chemistry and Physics, 2015, 156, 198-205.	4.0	58
16	Effect of the type of precursor and the synthesis method on thiophene hydrodesulfurization activity of activated carbon supported Fe-Mo, Co-Mo and Ni-Mo carbides. Journal of Molecular Catalysis A, 2008, 281, 85-92.	4.8	54
17	Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate. Combustion and Flame, 2017, 178, 286-296.	5.2	53
18	The Carburization of Transition Metal Molybdates (MxMoO4, MÂ=ÂCu, Ni or Co) and the Generation of Highly Active Metal/Carbide Catalysts for CO2 Hydrogenation. Catalysis Letters, 2015, 145, 1365-1373.	2.6	52

#	Article	IF	CITATIONS
19	Studies on the Behavior of Mixed-Metal Oxides:Â Structural, Electronic, and Chemical Properties of β-FeMoO4. Journal of Physical Chemistry B, 2000, 104, 8145-8152.	2.6	49
20	Characterization of supported MoO3 by temperature-programmed reduction. Polyhedron, 1986, 5, 179-182.	2.2	48
21	Reduction of CoMoO4 and NiMoO4: in situ Time-Resolved XRD Studies. Catalysis Letters, 2002, 82, 103-109.	2.6	44
22	Title is missing!. Catalysis Letters, 1998, 51, 85-93.	2.6	41
23	Activated carbon supported Niî—,Mo: effects of pretreatment and composition on catalyst reducibility and on ethylene conversion. Applied Catalysis A: General, 1997, 152, 27-42.	4.3	38
24	Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases. Analytical Biochemistry, 2004, 324, 79-83.	2.4	37
25	Application of 3A Zeolite Prepared from Venezuelan Kaolin for Removal of Pb (II) from Wastewater and Its Determination by Flame Atomic Absorption Spectrometry. American Journal of Analytical Chemistry, 2013, 04, 584-593.	0.9	37
26	Structure and activity of NiCo\$z.sbnd;Mo/SiO2 hydrodesulfurization catalysts. Journal of Catalysis, 1991, 131, 385-393.	6.2	35
27	Comparison of vanadium carbide and nitride catalysts for hydrotreating. Catalysis Communications, 2004, 5, 79-82.	3.3	33
28	Catalytic Wet Air Oxidation of Aqueous Solutions of Substituted Phenols. Catalysis Letters, 2006, 106, 81-88.	2.6	32
29	In-situ characterization of water–gas shift catalysts using time-resolved X-ray diffraction. Catalysis Today, 2009, 145, 188-194.	4.4	32
30	Relationship Between Sulfidation and HDS Catalytic Activity of Activated Carbon Supported Mo, Fe–Mo, Co–Mo and Ni–Mo Carbides. Catalysis Letters, 2010, 135, 212-218.	2.6	32
31	Characterization of bifunctional Pt/H[Ga]ZSM5 and Pt/H[Al]ZSM5 catalysts. Journal of Molecular Catalysis A, 2005, 227, 7-15.	4.8	30
32	Synthesis of La0.8Sr0.2FeO3 perovskites nanocrystals by Pechini sol–gel method. Materials Letters, 2013, 107, 231-234.	2.6	30
33	Surface copper enrichment by reduction of copper chromite catalyst employed for carbon monoxide oxidation. Catalysis Letters, 1990, 5, 45-54.	2.6	29
34	HDS activity of carbon-supported Ni–Mo catalysts derived from thiomolybdate complexes. Applied Catalysis A: General, 1998, 173, 193-199.	4.3	29
35	Effects of phase composition and of potassium promotion on cobalt molybdate catalysts for the synthesis of alcohols from CO2 and H2. Applied Catalysis A: General, 1998, 172, 217-224.	4.3	28
36	Catalytic effect of KOH on textural changes of carbon macro-networks by physical activation. Journal of Molecular Catalysis A, 2005, 228, 189-194.	4.8	28

#	Article	IF	CITATIONS
37	Effect of the activation process on thiophene hydrodesulfurization activity of activated carbon-supported bimetallic carbides. Catalysis Today, 2010, 149, 316-320.	4.4	27
38	Detection of β-NiMoO4 in oxidic nickel—molybdenum catalysts. Applied Catalysis, 1991, 72, L13-L15.	0.8	25
39	Modified cassava starches as potential corrosion inhibitors for sustainable development. Materials Research, 2013, 16, 1209-1219.	1.3	25
40	ESCA study of "model" allyl-based molybdenum/silica catalysts. The Journal of Physical Chemistry, 1993, 97, 5699-5702.	2.9	24
41	Carbon deposition and hydrodesulfurization activity of nickel-molybdenum supported catalysts. Applied Catalysis, 1985, 15, 333-338.	0.8	23
42	Synthesis and characterization of HPW/MCM-41 (Si) and HPW/MCM-41 (Si/Al) catalysts: Activity for toluene alkylation with 1-dodecene. Catalysis Today, 2008, 133-135, 20-27.	4.4	22
43	Atomic ratio effect on catalytic performance of FeW-based carbides and nitrides on thiophene hydrodesulfurization. Fuel, 2013, 110, 259-267.	6.4	22
44	Topological organization and textural changes of carbon macro-networks submitted to activation with N ₂ and CO ₂ . Journal of Materials Science, 2004, 39, 3705-3716.	3.7	21
45	Methane Transformation in Presence of Carbon Dioxide on Activated Carbon Supported Nickel–calcium Catalysts. Catalysis Letters, 2006, 109, 163-169.	2.6	21
46	Template synthesis and characterization of mesoporous γ-Al2O3 hollow nanorods using Stevia rebaudiana leaf aqueous extract. Ceramics International, 2013, 39, 4499-4506.	4.8	21
47	Novel MoO2/carbon hierarchical nano/microcomposites: synthesis, characterization, solid state transformations and thiophene HDS activity. Dalton Transactions, 2013, 42, 2822-2830.	3.3	21
48	Maya crude oil hydrotreating reaction in a batch reactor using alumina-supported NiMo carbide and nitride as catalysts. Catalysis Today, 2014, 220-222, 318-326.	4.4	21
49	In Situ Time-Resolved Characterization of Niâ^'MoO ₂ Catalysts for the Waterâ^'Gas Shift Reaction. Journal of Physical Chemistry C, 2008, 112, 2121-2128.	3.1	18
50	NiMo/MCM-41 Catalysts for the Hydrotreatment of Polychlorinated Biphenyls. Catalysis Letters, 2013, 143, 93-100.	2.6	18
51	Promoting effect of ceria on the performance of NiPd/CeO2–Al2O3catalysts for the selective hydrogenation of 1,3-butadiene in the presence of 1-butene. New Journal of Chemistry, 2018, 42, 11165-11173.	2.8	18
52	Relationship between the number and strength of the acid sites on solid surfaces using ammonia adsorption. Journal of Catalysis, 1980, 62, 157-160.	6.2	17
53	The role of nickel in the initial transformations of hydrodesulfurization catalysts. Journal of Catalysis, 1985, 91, 64-68.	6.2	16
54	MIBK from acetone on Pd/H-[Ga]ZSM5 catalysts: Effect of metal loading. Microporous and Mesoporous Materials, 2008, 116, 627-632.	4.4	16

#	Article	IF	CITATIONS
55	Synthesis, characterization of FAU/EMT intergrowths and its catalytic performance in n-pentane hydroisomerization reaction. Journal of Molecular Catalysis A, 2008, 281, 164-172.	4.8	16
56	Sulfidability and thiophene hydrodesulfurization activity of supported NiMo carbides. Catalysis Communications, 2014, 53, 9-14.	3.3	16
57	Selective hydrogenation of 1,3-butadiene in the presence of 1-butene under liquid phase conditions using structured catalysts. Catalysis Today, 2017, 289, 151-161.	4.4	16
58	Effect of fuel flow rate on the characteristics of soot generated from unsubstituted and disubstituted aromatic hydrocarbon flames: Experimental and numerical study. Combustion and Flame, 2018, 190, 224-239.	5.2	16
59	Effect of the Supported Pt on the Migration of Structural Ga Toward the Surface of Catalysts of the Pt/H[Ga]ZSM5 Type. Catalysis Letters, 2004, 97, 105-109.	2.6	14
60	Effects of fuel-bound methyl groups and fuel flow rate in the diffusion flames of aromatic fuels on the formation of volatile PAHs. Combustion and Flame, 2018, 198, 412-427.	5.2	14
61	Pollutant reduction and catalytic upgrading of a Venezuelan extra-heavy crude oil with Al2O3-supported NiW catalysts: Effect of carburization, nitridation and sulfurization. Fuel, 2019, 235, 577-588.	6.4	14
62	Microwave-assisted polyol synthesis of Pt/H-ZSM5 catalysts. Microporous and Mesoporous Materials, 2010, 131, 342-349.	4.4	13
63	Acetone transformation over PtSn/H[Al]ZSM5 catalysts. Journal of Molecular Catalysis A, 2003, 203, 277-286.	4.8	12
64	Theoretical study of Au/SAPO-11 catalyst and its potential use in thiophene HDS. Journal of Molecular Catalysis A, 2010, 315, 28-34.	4.8	12
65	One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts. Journal of Sol-Gel Science and Technology, 2018, 88, 90-99.	2.4	12
66	Metallic monoliths of AISI 304 stainless steel, aluminum, FeCrAlloy® and brass, coated by Mo and W oxides for thiophene hydrodesulfurization. Fuel, 2013, 110, 235-248.	6.4	11
67	Synthesis of Pt and Pt–Sn catalysts supported on H-Y zeolite induced by microwave radiation. Microporous and Mesoporous Materials, 2013, 170, 189-193.	4.4	11
68	An X-ray photoelectron spectroscopy study of the atomization of Mo from pyrolytic graphite platforms in Electrothermal Atomic Absorption Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 133, 1-8.	2.9	11
69	Characterization of hdpe/ha Composites Treated with Titanate and Zirconate Coupling Agents. Macromolecular Symposia, 2007, 247, 190-198.	0.7	10
70	Nanocomposite building blocks of TiO2–MWCNTf and ZrO2–MWCNTf. Materials Characterization, 2012, 64, 96-106.	4.4	10
71	Heterogenization of Co(II)- and Cu(II)-complexes containing a terpyridine-based Schiff base macrocyclic ligand on thiol-functionalized mesostructured silica. Journal of Organometallic Chemistry, 2020, 908, 121073.	1.8	10
72	Probing silica-supported Mo2+ by means of FT-IR of adsorbed CO. Catalysis Letters, 1998, 50, 169-172.	2.6	9

#	Article	IF	CITATIONS
73	Influence of the acid sites density in the acetone transformation over bifunctional Pt/H[Ga]ZSM5 catalysts. Microporous and Mesoporous Materials, 2007, 102, 86-94.	4.4	9
74	MCM-41-supported vanadium catalysts structurally modified with Al or Zr for thiophene hydrodesulfurization. Applied Petrochemical Research, 2019, 9, 47-55.	1.3	9
75	Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates. Materials Research Bulletin, 2013, 48, 730-738.	5.2	8
76	Influence of toluene on the catalytic activity of NiPdCe catalyst for selective hydrogenation of 1,3-butadiene. Fuel, 2013, 110, 76-82.	6.4	8
77	Selective hydrogenation of 1,3-butadiene in presence of 1-butene under liquid phase conditions with NiPd/Al2O3 catalysts. Applied Petrochemical Research, 2016, 6, 379-387.	1.3	8
78	Surface Recognition Directed Selective Removal of Dyes from Aqueous Solution on Hydrophilic Functionalized Petroleum Coke Sorbents. A Supramolecular Perspective. Industrial & Engineering Chemistry Research, 2019, 58, 14761-14774.	3.7	8
79	Characterization of oxide catalysts using time-resolved XRD and XANES: Properties of pure and sulfided CoMoO4 and NiMoO4. Studies in Surface Science and Catalysis, 2000, , 2795-2800.	1.5	7
80	Theoretical calculations of silica supported Mo2(η3-C3H5)4 species. Computational and Theoretical Chemistry, 2003, 625, 59-70.	1.5	7
81	X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions. Applied Surface Science, 2006, 252, 8695-8701.	6.1	7
82	Preparation and characterization of bifunctional catalysts of the Pd, Pt/H[Ga]MFI types. Catalysis Today, 2008, 133-135, 99-105.	4.4	7
83	Preparation of Î ³ -alumina ceramic foams employing hydrophilated polyester polyurethane sponges. Journal of Materials Science, 2009, 44, 4507-4509.	3.7	7
84	Catalytic wet air oxidation of oilfield produced wastewater containing refractory organic pollutants over copper/cerium–manganese oxide. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 347-360.	1.7	7
85	Effect of the structural modification by carbiding of alumina supported Anderson-type (NH4)4[NiMo6â^'xWxO24H6]·5H2O on hydrodesulfurization, hydrodechlorination and selective oxidation. Catalysis Communications, 2017, 99, 89-93.	3.3	7
86	Adsorption properties of novel layered titanium phosphate prepared from mesoporous titania by sol–gel processing. Journal of Sol-Gel Science and Technology, 2021, 97, 431-440.	2.4	7
87	Titanium-modified MCM-41 molecular sieves as efficient supports to increase the hydrogenation abilities of NiMoS and CoMoS catalysts. Journal of Industrial and Engineering Chemistry, 2021, 95, 340-349.	5.8	7
88	Microstructural study of FeMo/MgO catalysts prepared by sol–gel and co–impregnation and their relationship with the growth of carbon nanotubes. Diamond and Related Materials, 2015, 60, 35-41.	3.9	6
89	Preparación de nanopartÃculas de plata en ausencia de polimeros estabilizantes. Quimica Nova, 2010, 33, 1266-1269.	0.3	6
90	XPS characterization of vanadium carbide species formed during the atomization process in electrothermal atomic absorption spectroscopy. Journal of Analytical Atomic Spectrometry, 2022, 37, 668-676.	3.0	6

#	Article	IF	CITATIONS
91	Acid strength distributions in the Moâ^'Alâ^'Si and the Niâ^'Moâ^'Al oxide systems determined by ammonia adsorption. Reaction Kinetics and Catalysis Letters, 1984, 25, 5-10.	0.6	5
92	Parametric calculations of Mo-allyl complexes anchored on silica. Journal of Molecular Catalysis A, 2001, 168, 265-277.	4.8	5
93	Theoretical study of CO adsorption and oxidation on Au3–5 clusters supported on silico-aluminophospates. Computational and Theoretical Chemistry, 2014, 1042, 69-83.	2.5	5
94	Theoretical study of dimeric dioxo-μ-oxo and oxo-bis (μ-oxo) of molybdenum complexes used in catalytic oxidations reactions. Catalysis Today, 2005, 107-108, 388-396.	4.4	4
95	Theoretical study of olefin oxidation process on a dioxoâ€Î¼â€oxo Mo catalyst. International Journal of Quantum Chemistry, 2008, 108, 1674-1683.	2.0	4
96	Theoretical study of the CO catalytic oxidation on Au/SAPOâ€11 zeolite. International Journal of Quantum Chemistry, 2010, 110, 2573-2582.	2.0	4
97	Chitosan templated synthesis of strontium–iron–oxygen nanocrystalline system. Ceramics International, 2015, 41, 13250-13256.	4.8	4
98	Development of a Copper Chromite Catalyst for Carbon Monoxide Automobile Emission Control. Studies in Surface Science and Catalysis, 1987, 30, 387-393.	1.5	3
99	Preparation and Characterization of Bifunctional Pt-Sn/H[Al]ZSM5 Catalysts. Catalysis Letters, 2003, 89, 99-104.	2.6	3
100	Theoretical study of the water effect on CO adsorbed over Au/SAPO-11 catalysts. Journal of Computational Methods in Sciences and Engineering, 2009, 9, 281-287.	0.2	3
101	Catalytic Chemical Vapor Deposition Synthesis of Carbon Aerogels of High-Surface Area and Porosity. Journal of Nanotechnology, 2012, 2012, 1-5.	3.4	3
102	Evaluation of calcined hydrocalumite-type materials as supports of CoMo and NiMo for thiophene hydrodesulfuration reaction. Materials Research, 2014, 17, 823-828.	1.3	3
103	Remoción de plomo en soluciones acuosas empleando nanoaluminofosfatos amorfos. Revista Ambiente & Ãgua, 2015, 10, .	0.3	3
104	An egg-shell bifunctional CeO2-modified NiPd/Al2O3 catalyst for petrochemical processes involving selective hydrogenation and hydroisomerization. Journal of Rare Earths, 2021, 39, 1382-1388.	4.8	3
105	Generalized non-ideal treatment and growth rates analysis of drift waves instabilities in a collisions-free magnetized dusty plasma. Physics of Plasmas, 2021, 28, .	1.9	3
106	Synthesis, characterization and hydrotreating activity of nanostructured systems on carbon supported vanadium. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 321-332.	1.7	2
107	Garnierite: A new support for hydrodesulfurization catalysts. Materials Letters, 2014, 131, 269-271.	2.6	2
108	EBSD Crystalochemical Analysis of (W,V)C Cemented Carbides. Microscopy and Microanalysis, 2004, 10, 710-711.	0.4	1

7

#	Article	IF	CITATIONS
109	Unsupported Molybdenum Carbide and Nitride Catalysts for Polychlorinated Biphenyls Hydrodechlorination. Catalysis Letters, 2013, 143, 1145-1152.	2.6	1
110	Comparative theoretical study of Au1-3 and Cu1-3 clusters supported on SAPO-11 and their interactions with CO. Journal of Computational Methods in Sciences and Engineering, 2017, 17, 89-96.	0.2	1
111	Modeling the interaction of molybdenum species adsorbed on a pyrolytic graphite platform and correlations with XPS spectra at different ETAAS stages. Surface Science, 2018, 677, 149-160.	1.9	1
112	Effect of Hydrotreating Reaction Conditions on Viscosity, API Gravity and Specific Gravity of Maya Crude Oil. Environmental Science and Engineering, 2014, , 423-430.	0.2	1
113	Eight national meeting on catalysis. Applied Catalysis, 1987, 33, 253-254.	0.8	0
114	Catalytic effect on hydrogen sulphide generation from a tar sand. Applied Catalysis, 1989, 53, 81-87.	0.8	0
115	Characterization of Mixed-Metal Oxides Using Synchrotron-Based Time-Resolved x-ray Diffraction and x-ray Absorption Spectroscopy. Materials Research Society Symposia Proceedings, 1999, 590, 113.	0.1	0
116	?Vibrational frequencies of CO adsorbed on silica-supported Mo atoms from density functional calculations?: a re-interpretation of results reported by N. L�pez, F. Illas, G. Pacchioni. Journal of Molecular Catalysis A, 2004, 214, 249-251.	4.8	0
117	Theoretical study of small clusters Au3-4 on Au/SAPO-11 catalysts and their interactions with CO. Journal of Computational Methods in Sciences and Engineering, 2012, 12, 391-396.	0.2	0
118	Theoretical study of small clusters Au5-6 on Au/SAPO-11 catalysts and their interactions with CO. Journal of Computational Methods in Sciences and Engineering, 2014, 14, 45-52.	0.2	0
119	DFT study of the sulfidation pretreatment of molybdenum carbides in the hydrodechlorination reaction of chlorobenzene. Journal of Computational Methods in Sciences and Engineering, 2014, 14, 169-177.	0.2	0
120	Effect of H2S inhibition on the hydrodechlorination of polychlorinated biphenyls over Mo/Al2O3 and Co–Mo/Al2O3 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 277-292.	1.7	0
121	Synthesis and characterization of alumina-coated aluminum sponges manufactured by sintering and dissolution process as possible structured reactors. Materials Chemistry and Physics, 2016, 171, 216-221.	4.0	0
122	Electron paramagnetic resonance study of electronic changes of vanadium in poisoned hydrodesulfurization catalysts submitted to oxidation, carbiding and nitriding processes. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 935-947.	1.7	0
123	Caracterización por Microscopia Electrónica de Barrido del recubrimiento no electrolÃŧico de nÃquel (Electroless Nickel) sobre piezas de hierro boronizado. Revista UIS IngenierÃas, 2019, 18, 127-140.	0.2	0