
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2123940/publications.pdf Version: 2024-02-01

Δ77ΛΜ ΜΟΠΒΛΟ

#	Article	IF	CITATIONS
1	LP-SBA-XACML: Lightweight Semantics Based Scheme Enabling Intelligent Behavior-Aware Privacy for IoT. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 161-175.	5.4	12
2	Demand-Driven Deep Reinforcement Learning for Scalable Fog and Service Placement. IEEE Transactions on Services Computing, 2022, 15, 2671-2684.	4.6	36
3	Joint computing, communication and cost-aware task offloading in D2D-enabled Het-MEC. Computer Networks, 2022, 209, 108900.	5.1	12
4	On Demand Fog Federations for Horizontal Federated Learning in IoV. IEEE Transactions on Network and Service Management, 2022, 19, 3062-3075.	4.9	43
5	Graph convolutional recurrent networks for reward shaping in reinforcement learning. Information Sciences, 2022, 608, 63-80.	6.9	20
6	Resource-Aware Detection and Defense System against Multi-Type Attacks in the Cloud: Repeated Bayesian Stackelberg Game. IEEE Transactions on Dependable and Secure Computing, 2021, 18, 605-622.	5.4	31
7	FedMCCS: Multicriteria Client Selection Model for Optimal IoT Federated Learning. IEEE Internet of Things Journal, 2021, 8, 4723-4735.	8.7	129
8	<i>Ad Hoc</i> Vehicular Fog Enabling Cooperative Low-Latency Intrusion Detection. IEEE Internet of Things Journal, 2021, 8, 829-843.	8.7	65
9	Ontology based recommender system using social network data. Future Generation Computer Systems, 2021, 115, 769-779.	7.5	33
10	A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet of Things Journal, 2021, 8, 5476-5497.	8.7	283
11	A Novel Federated Fog Architecture Embedding Intelligent Formation. IEEE Network, 2021, 35, 198-204.	6.9	20
12	Multi-Persona Mobility: Joint Cost-Effective and Resource-Aware Mobile-Edge Computation Offloading. IEEE/ACM Transactions on Networking, 2021, 29, 1408-1421.	3.8	23
13	Al-Based Resource Provisioning of IoE Services in 6G: A Deep Reinforcement Learning Approach. IEEE Transactions on Network and Service Management, 2021, 18, 3527-3540.	4.9	55
14	Task coalition formation for Mobile CrowdSensing based on workers' routes preferences. Vehicular Communications, 2021, 31, 100376.	4.0	9
15	Stable federated fog formation: An evolutionary game theoretical approach. Future Generation Computer Systems, 2021, 124, 21-32.	7.5	25
16	Federated Machine Learning: Survey, Multi-Level Classification, Desirable Criteria and Future Directions in Communication and Networking Systems. IEEE Communications Surveys and Tutorials, 2021, 23, 1342-1397.	39.4	243
17	Optimal Load Distribution for the Detection of VM-Based DDoS Attacks in the Cloud. IEEE Transactions on Services Computing, 2020, 13, 114-129.	4.6	60
18	Reinforcement R-learning model for time scheduling of on-demand fog placement. Journal of Supercomputing, 2020, 76, 388-410.	3.6	23

#	Article	IF	CITATIONS
19	Cloud federation formation using genetic and evolutionary game theoretical models. Future Generation Computer Systems, 2020, 104, 92-104.	7.5	43
20	Dynamic On-Demand Fog Formation Offering On-the-Fly IoT Service Deployment. IEEE Transactions on Network and Service Management, 2020, 17, 1026-1039.	4.9	64
21	Critical Impact of Social Networks Infodemic on Defeating Coronavirus COVID-19 Pandemic: Twitter-Based Study and Research Directions. IEEE Transactions on Network and Service Management, 2020, 17, 2145-2155.	4.9	87
22	A rewriting system for the assessment of XACML policies relationship. Computers and Security, 2020, 97, 101957.	6.0	2
23	Nanosensors for traffic condition monitoring. , 2020, , 187-208.		0
24	Towards Trust-Aware IoT Hashing Offloading in Mobile Edge Computing. , 2020, , .		9
25	FScaler: Automatic Resource Scaling of Containers in Fog Clusters Using Reinforcement Learning. , 2020, , .		20
26	Optical Spatial Modulation with Improved Energy Harvesting for MIMO FSO Communications. , 2020, , .		0
27	Internet of Things Intrusion Detection: Centralized, On-Device, or Federated Learning?. IEEE Network, 2020, 34, 310-317.	6.9	187
28	Intelligent Performance-Aware Adaptation of Control Policies for Optimizing Banking Teller Process Using Machine Learning. IEEE Access, 2020, 8, 153403-153412.	4.2	23
29	FoGMatch: An Intelligent Multi-Criteria IoT-Fog Scheduling Approach Using Game Theory. IEEE/ACM Transactions on Networking, 2020, 28, 1779-1789.	3.8	55
30	Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services. IEEE/ACM Transactions on Networking, 2020, 28, 778-790.	3.8	68
31	Al, Blockchain, and Vehicular Edge Computing for Smart and Secure IoV: Challenges and Directions. IEEE Internet of Things Magazine, 2020, 3, 68-73.	2.6	86
32	An endorsement-based trust bootstrapping approach for newcomer cloud services. Information Sciences, 2020, 527, 159-175.	6.9	37
33	A Framework for Automated Monitoring and Orchestration of Cloud-Native applications. , 2020, , .		2
34	A Blockchain based Architecture for the Detection of Fake Sensing in Mobile Crowdsensing. , 2019, , .		30
35	A Novel Ad-Hoc Mobile Edge Cloud Offering Security Services Through Intelligent Resource-Aware Offloading. IEEE Transactions on Network and Service Management, 2019, 16, 1665-1680.	4.9	60

36 Sampling Online Social Networks with Tailored Mining Strategies. , 2019, , .

3

#	Article	IF	CITATIONS
37	An Infrastructure-Assisted Crowdsensing Approach for On-Demand Traffic Condition Estimation. IEEE Access, 2019, 7, 163323-163340.	4.2	15
38	Proactive machine learning-based solution for advanced manageability of multi-persona mobile computing. Computers and Electrical Engineering, 2019, 80, 106497.	4.8	10
39	On the Detection of Passive Malicious Providers in Cloud Federations. IEEE Communications Letters, 2019, 23, 64-67.	4.1	12
40	Selective Mobile Cloud Offloading to Augment Multi-Persona Performance and Viability. IEEE Transactions on Cloud Computing, 2019, 7, 314-328.	4.4	26
41	A novel on-demand vehicular sensing framework for traffic condition monitoring. Vehicular Communications, 2018, 12, 165-178.	4.0	23
42	Towards Trustworthy Multi-Cloud Services Communities: A Trust-Based Hedonic Coalitional Game. IEEE Transactions on Services Computing, 2018, 11, 184-201.	4.6	71
43	Towards Proactive Social Learning Approach for Traffic Event Detection based on Arabic Tweets. , 2018, , .		10
44	Few are as Good as Many: An Ontology-Based Tweet Spam Detection Approach. IEEE Access, 2018, 6, 63890-63904.	4.2	16
45	Towards Dynamic On-Demand Fog Computing Formation Based On Containerization Technology. , 2018, , \cdot		6
46	Towards a Lightweight Policy-Based Privacy Enforcing Approach for IoT. , 2018, , .		6
47	Smart mobile computation offloading: Centralized selective and multi-objective approach. Expert Systems With Applications, 2017, 80, 1-13.	7.6	21
48	I Know You Are Watching Me: Stackelberg-Based Adaptive Intrusion Detection Strategy for Insider Attacks in the Cloud. , 2017, , .		7
49	On the Effects of User Ratings on the Profitability of Cloud Services. , 2017, , .		7
50	Towards ad-hoc cloud based approach for mobile intrusion detection. , 2016, , .		6
51	An Android-based Trojan Spyware to Study the NotificationListener Service Vulnerability. Procedia Computer Science, 2016, 83, 465-471.	2.0	7
52	How to Distribute the Detection Load among Virtual Machines to Maximize the Detection of Distributed Attacks in the Cloud?. , 2016, , .		13
53	Welcome Messages. , 2016, , .		0
54	Towards on Demand Road Condition Monitoring Using Mobile Phone Sensing as a Service. Procedia Computer Science, 2016, 83, 345-352.	2.0	14

#	Article	IF	CITATIONS
55	CEAP: SVM-based intelligent detection model for clustered vehicular ad hoc networks. Expert Systems With Applications, 2016, 50, 40-54.	7.6	99
56	A Stackelberg game for distributed formation of business-driven services communities. Expert Systems With Applications, 2016, 45, 359-372.	7.6	33
57	From model-driven specification to design-level set-based analysis of XACML policies. Computers and Electrical Engineering, 2016, 52, 65-79.	4.8	9
58	A survey on trust and reputation models for Web services: Single, composite, and communities. Decision Support Systems, 2015, 74, 121-134.	5.9	108
59	A Cooperative Detection Model Based on Artificial Neural Network for VANET QoS-OLSR Protocol. , 2015, , .		10
60	Driver stress level detection using HRV analysis. , 2015, , .		72
61	Semantics-based approach for detecting flaws, conflicts and redundancies in XACML policies. Computers and Electrical Engineering, 2015, 44, 91-103.	4.8	26
62	AOMD approach for context-adaptable and conflict-free Web services composition. Computers and Electrical Engineering, 2015, 44, 200-217.	4.8	10
63	Misbehavior Detection Framework for Community-Based Cloud Computing. , 2015, , .		4
64	Analyzing Social Web Services' Capabilities. , 2015, , .		0
65	Towards an offloading approach that augments multi-persona performance and viability. , 2015, , .		2
66	SBA-XACML: Set-based approach providing efficient policy decision process for accessing Web services. Expert Systems With Applications, 2015, 42, 165-178.	7.6	28
67	Assuring consistency in mixed models. Journal of Computational Science, 2014, 5, 653-663.	2.9	2
68	A cooperative watchdog model based on Dempster–Shafer for detecting misbehaving vehicles. Computer Communications, 2014, 41, 43-54.	5.1	76
69	A Dempster–Shafer Based Tit-for-Tat Strategy to Regulate the Cooperation in VANET Using QoS-OLSR Protocol. Wireless Personal Communications, 2014, 75, 1635-1667.	2.7	30
70	Reputation-Based Cooperative Detection Model of Selfish Nodes in Cluster-Based QoS-OLSR Protocol. Wireless Personal Communications, 2014, 75, 1747-1768.	2.7	24
71	Towards efficient evaluation of XACML policies. , 2014, , .		6
72	VANET QoS-OLSR: QoS-based clustering protocol for Vehicular Ad hoc Networks. Computer Communications, 2013, 36, 1422-1435.	5.1	150

#	Article	IF	CITATIONS
73	Common weaving approach in mainstream languages for software security hardening. Journal of Systems and Software, 2013, 86, 2654-2674.	4.5	0
74	Botnet detection: A cooperative game theoretical correlation-based model. , 2013, , .		2
75	Detecting attacks in QoS-OLSR protocol. , 2013, , .		5
76	XrML-RBLicensing approach adapted to the BPEL process of composite web services. Service Oriented Computing and Applications, 2013, 7, 217-230.	1.6	4
77	New XACML-AspectBPEL approach for composite web services security. International Journal of Web and Grid Services, 2013, 9, 127.	0.5	8
78	Towards Smart Anti-Malwares for Battery-Powered Devices. , 2012, , .		1
79	A novel aspect-oriented BPEL framework for the dynamic enforcement of web services security. International Journal of Web and Grid Services, 2012, 8, 361.	0.5	8
80	A synergy between context-aware policies and AOP to achieve highly adaptable Web services. Service Oriented Computing and Applications, 2012, 6, 379-392.	1.6	9
81	Towards a BPEL model-driven approach for Web services security. , 2012, , .		5
82	Toward Systematic Integration of Security Policies into Web Services. , 2011, , .		0
83	A cluster-based model for QoS-OLSR protocol. , 2011, , .		15
84	Towards context-adaptable Web service policies. Procedia Computer Science, 2011, 5, 610-617.	2.0	9
85	New Approach Targeting Security Patterns Development and Deployment. Information Security Journal, 2011, 20, 231-244.	1.9	3
86	A Novel Approach for the Development and Deployment of Security Patterns. , 2010, , .		1
87	New approach for the dynamic enforcement of Web services security. , 2010, , .		9
88	New aspect-oriented constructs for security hardening concerns. Computers and Security, 2009, 28, 341-358.	6.0	3
89	An aspect-oriented approach for the systematic security hardening of code. Computers and Security, 2008, 27, 101-114.	6.0	19
90	Cross-Language Weaving Approach Targeting Software Security Hardening. , 2008, , .		1

#	Article	IF	CITATIONS
91	A High-level Aspect-oriented-based Framework for Software Security Hardening. Information Security Journal, 2008, 17, 56-74.	1.9	15
92	TOWARDS LANGUAGE-INDEPENDENT APPROACH FOR SECURITY CONCERNS WEAVING. , 2008, , .		0
93	A Security Hardening Language Based on Aspect-Orientation. Communications in Computer and Information Science, 2008, , 254-266.	O.5	0
94	Towards an Aspect Oriented Approach for the Security Hardening of Code. , 2007, , .		12
95	A HIGH-LEVEL ASPECT-ORIENTED BASED LANGUAGE FOR SOFTWARE SECURITY HARDENING. , 2007, , .		5
96	New Primitives to AOP Weaving Capabilities for Security Hardening Concerns. , 2007, , .		0
97	Control Flow Based Pointcuts for Security Hardening Concerns. , 2007, , 301-316.		3
98	A selective dynamic compiler for embedded Java virtual machines targeting ARM processors. Science of Computer Programming, 2006, 59, 38-63.	1.9	1
99	Security Design Patterns: Survey and Evaluation. , 2006, , .		24
100	Security hardening of open source software. , 2006, , .		10
101	Armed E-Bunny. , 2005, , .		5
102	Accelerating embedded Java for mobile devices. , 2005, 43, 80-85.		6
103	Improving the Security of SNMP in Wireless Networks. , 0, , .		2