
Paul S Knoepfler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/212366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myc Supports Self-Renewal of Basal Cells in the Esophageal Epithelium. Frontiers in Cell and Developmental Biology, 2022, 10, 786031.	3.7	2
2	Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG. Epigenetics and Chromatin, 2022, 15, 18.	3.9	9
3	Nichts als Drachen im Kopf. , 2021, , 83-111.		Ο
4	Stem cell models help crack regional oncohistone codes driving childhood gliomas. Cell Stem Cell, 2021, 28, 785-787.	11.1	1
5	Anticipated impact of stem cell and other cellular medicine clinical trials for COVID-19. Regenerative Medicine, 2021, 16, 525-533.	1.7	4
6	DPPA2, DPPA4, and other DPPA factor epigenomic functions in cell fate and cancer. Stem Cell Reports, 2021, 16, 2844-2851.	4.8	1
7	Reciprocal H3.3 gene editing identifies K27M and G34R mechanisms in pediatric glioma including NOTCH signaling. Communications Biology, 2020, 3, 363.	4.4	32
8	The Molecular Circuitry Underlying Pluripotency in Embryonic and Induced Pluripotent Stem Cells. , 2019, , 49-63.		1
9	Rapid change of a cohort of 570 unproven stem cell clinics in the USA over 3Âyears. Regenerative Medicine, 2019, 14, 735-740.	1.7	19
10	ERBB3-Binding Protein 1 (EBP1) Is a Novel Developmental Pluripotency-Associated-4 (DPPA4) Cofactor in Human Pluripotent Cells. Stem Cells, 2018, 36, 671-682.	3.2	9
11	The FDA and the US direct-to-consumer marketplace for stem cell interventions: a temporal analysis. Regenerative Medicine, 2018, 13, 19-27.	1.7	48
12	Mapping and driving the stem cell ecosystem. Regenerative Medicine, 2018, 13, 845-858.	1.7	5
13	Genomic functions of developmental pluripotency associated factor 4 (Dppa4) in pluripotent stem cells and cancer. Stem Cell Research, 2018, 31, 83-94.	0.7	14
14	Too Much Carrot and Not Enough Stick in New Stem Cell Oversight Trends. Cell Stem Cell, 2018, 23, 18-20.	11.1	10
15	Selbstbauanleitung zur Erschaffung von GMO sapiens. , 2018, , 135-158.		0
16	Behavior of Xeno-Transplanted Undifferentiated Human Induced Pluripotent Stem Cells Is Impacted by Microenvironment Without Evidence of Tumors. Stem Cells and Development, 2017, 26, 1409-1423.	2.1	6
17	The Stem Cell Hard Sell: Report from a Clinic's Patient Recruitment Seminar. Stem Cells Translational Medicine, 2017, 6, 14-16.	3.3	18
18	CRISPR-mediated HDAC2 disruption identifies two distinct classes of target genes in human cells. PLoS ONE. 2017, 12, e0185627.	2.5	11

#	Article	IF	CITATIONS
19	Selling Stem Cells in the USA: Assessing the Direct-to-Consumer Industry. Cell Stem Cell, 2016, 19, 154-157.	11.1	298
20	To CRISPR and beyond: the evolution of genome editing in stem cells. Regenerative Medicine, 2016, 11, 801-816.	1.7	13
21	When patients reach out, scientists should reach back carefully. Nature Medicine, 2016, 22, 230-230.	30.7	5
22	From bench to FDA to bedside: US regulatory trends for new stem cell therapies. Advanced Drug Delivery Reviews, 2015, 82-83, 192-196.	13.7	82
23	Reviewing post-publication peer review. Trends in Genetics, 2015, 31, 221-223.	6.7	51
24	Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development (Cambridge), 2014, 141, 3483-3494.	2.5	97
25	Miz-1 Activates Gene Expression via a Novel Consensus DNA Binding Motif. PLoS ONE, 2014, 9, e101151.	2.5	14
26	Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics and Chromatin, 2013, 6, 7.	3.9	79
27	Key Action Items for the Stem Cell Field: Looking Ahead to 2014. Stem Cells and Development, 2013, 22, 10-12.	2.1	5
28	Histone H3.3 Mutations: A Variant Path to Cancer. Cancer Cell, 2013, 24, 567-574.	16.8	117
29	Scientists: you really need to get out of the lab more. Nature Medicine, 2013, 19, 1086-1086.	30.7	0
30	Myc binds the pluripotency factor Utf1 through the basic-helix-loop-helix leucine zipper domain. Biochemical and Biophysical Research Communications, 2013, 435, 551-556.	2.1	5
31	Identification of DPPA4 and DPPA2 as a novel family of pluripotency-related oncogenes. Stem Cells, 2013, 31, 2330-2342.	3.2	27
32	Induced Pluripotency and Oncogenic Transformation Are Related Processes. Stem Cells and Development, 2013, 22, 37-50.	2.1	98
33	Call for fellowship programs in stem cell-based regenerative and cellular medicine: new stem cell training is essential for physicians. Regenerative Medicine, 2013, 8, 223-225.	1.7	25
34	Chromatin Immunoprecipitation Assays for Myc and N-Myc. Methods in Molecular Biology, 2013, 1012, 117-133.	0.9	9
35	Induced Pluripotent Stem Cells Show Metabolomic Differences to Embryonic Stem Cells in Polyunsaturated Phosphatidylcholines and Primary Metabolism. PLoS ONE, 2012, 7, e46770.	2.5	68
36	Key anticipated regulatory issues for clinical use of human induced pluripotent stem cells. Regenerative Medicine, 2012, 7, 713-720.	1.7	16

#	Article	IF	CITATIONS
37	Utf1: Goldilocks for ESC Bivalency. Cell Stem Cell, 2012, 11, 732-734.	11.1	7
38	Constitutive gray hair in mice induced by melanocyteâ€specific deletion of câ€Myc. Pigment Cell and Melanoma Research, 2012, 25, 312-325.	3.3	13
39	N-Myc and GCN5 Regulate Significantly Overlapping Transcriptional Programs in Neural Stem Cells. PLoS ONE, 2012, 7, e39456.	2.5	55
40	Inducing iPSCs to Escape the Dish. Cell Stem Cell, 2011, 9, 103-111.	11.1	65
41	Transduction of Human Cells with Polymer-complexed Ecotropic Lentivirus for Enhanced Biosafety. Journal of Visualized Experiments, 2011, , .	0.3	4
42	Myc and Miz-1 have coordinate genomic functions including targeting Hox genes in human embryonic stem cells. Epigenetics and Chromatin, 2011, 4, 20.	3.9	30
43	My year as a stem-cell blogger. Nature, 2011, 475, 425-425.	27.8	1
44	<i>N-myc</i> Controls Proliferation, Morphogenesis, and Patterning of the Inner Ear. Journal of Neuroscience, 2011, 31, 7178-7189.	3.6	46
45	c- and N-myc Regulate Neural Precursor Cell Fate, Cell Cycle, and Metabolism to Direct Cerebellar Development. Cerebellum, 2010, 9, 537-547.	2.5	44
46	Wnt signaling and its downstream target N-myc regulate basal progenitors in the developing neocortex. Development (Cambridge), 2010, 137, 1035-1044.	2.5	81
47	The death of MyMouseHouse: lessons for systems for the efficient management of mouse colonies. DMM Disease Models and Mechanisms, 2010, 3, 9-10.	2.4	0
48	Arrestin' the hedgehog: Shh limits its own signaling via β-Arrestin1. Cell Cycle, 2010, 9, 4266-4265.	2.6	1
49	myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation, 2010, 80, 9-19.	1.9	165
50	C-myc and N-myc in the developing brain. Aging, 2010, 2, 261-262.	3.1	2
51	c- <i>myc</i> and N- <i>myc</i> promote active stem cell metabolism and cycling as architects of the developing brain. Oncotarget, 2010, 1, 120-130.	1.8	46
52	N-Myc Regulates Expression of Pluripotency Genes in Neuroblastoma Including lif, klf2, klf4, and lin28b. PLoS ONE, 2009, 4, e5799.	2.5	77
53	Acting Locally and Globally: Myc's Ever-Expanding Roles on Chromatin. Cancer Research, 2009, 69, 7487-7490.	0.9	47
54	Deconstructing Stem Cell Tumorigenicity: A Roadmap to Safe Regenerative Medicine. Stem Cells, 2009, 27, 1050-1056.	3.2	423

#	Article	IF	CITATIONS
55	Division and apoptosis of E2f-deficient retinal progenitors. Nature, 2009, 462, 925-929.	27.8	132
56	Why Myc? An Unexpected Ingredient in the Stem Cell Cocktail. Cell Stem Cell, 2008, 2, 18-21.	11.1	110
57	Hematopoietic Stem Cell Function and Survival Depend on c-Myc and N-Myc Activity. Cell Stem Cell, 2008, 3, 611-624.	11.1	253
58	N-myc coordinates retinal growth with eye size during mouse development. Genes and Development, 2008, 22, 179-193.	5.9	45
59	N-Myc Regulates a Widespread Euchromatic Program in the Human Genome Partially Independent of Its Role as a Classical Transcription Factor. Cancer Research, 2008, 68, 9654-9662.	0.9	121
60	Stem Cells on the Brain. Archives of Neurology, 2008, 65, 311-5.	4.5	2
61	Myc Goes Global: New Tricks for an Old Oncogene: Figure 1 Cancer Research, 2007, 67, 5061-5063.	0.9	113
62	Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. Journal of Cell Biology, 2007, 179, 717-731.	5.2	109
63	Activities of N-Myc in the developing limb link control of skeletal size with digit separation. Development (Cambridge), 2007, 134, 1583-1592.	2.5	47
64	Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. Journal of Experimental Medicine, 2007, 204, i29-i29.	8.5	0
65	Myc influences global chromatin structure. EMBO Journal, 2006, 25, 2723-2734.	7.8	343
66	Neural Precursor Cycling at Sonic Speed: N-Myc Pedals, GSK-3 Brakes. Cell Cycle, 2006, 5, 47-52.	2.6	90
67	N-myc Is an Essential Downstream Effector of Shh Signaling during both Normal and Neoplastic Cerebellar Growth. Cancer Research, 2006, 66, 8655-8661.	0.9	157
68	N-Myc and the cyclin-dependent kinase inhibitors p18Ink4c and p27Kip1 coordinately regulate cerebellar development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11579-11583.	7.1	69
69	Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development (Cambridge), 2005, 132, 1363-1374.	2.5	219
70	HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations. Nature Structural and Molecular Biology, 2004, 11, 738-746.	8.2	68
71	Pbx Marks Genes for Activation by MyoD Indicating a Role for a Homeodomain Protein in Establishing Myogenic Potential. Molecular Cell, 2004, 14, 465-477.	9.7	307
72	N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes and Development, 2002, 16, 2699-2712.	5.9	451

#	Article	IF	CITATIONS
73	HoxB8 requires its Pbx-interaction motif to block differentiation of primary myeloid progenitors and of most cell line models of myeloid differentiation. Oncogene, 2001, 20, 5440-5448.	5.9	54
74	Direct interaction of two homeoproteins, Homothorax and Extradenticle, is essential for EXD nuclear localization and function. Mechanisms of Development, 2000, 91, 279-291.	1.7	78
75	A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with Pbx-Meis1/Prep1. Nucleic Acids Research, 1999, 27, 3752-3767.	14.5	107
76	An inhibitory switch derepressed by Pbx, Hox, and Meis/Prep1 partners regulates DNA-binding by Pbx1 and E2a-Pbx1 and is dispensable for myeloid immortalization by E2a-Pbx1. Oncogene, 1999, 18, 8033-8043.	5.9	39
77	Sin Meets NuRD and Other Tails of Repression. Cell, 1999, 99, 447-450.	28.9	332
78	The Pbx family of proteins is strongly upregulated by a post-transcriptional mechanism during retinoic acid-induced differentiation of P19 embryonal carcinoma cells. Mechanisms of Development, 1997, 63, 5-14.	1.7	31
79	Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 14553-14558.	7.1	184
80	The highest affinity DNA element bound by Pbx complexes in t(1;19) leukemic cells fails to mediate cooperative DNA-binding or cooperative transactivation by E2a-Pbx1 and Class I Hox proteins – ev for selective targetting of E2a-Pbx1 to a subset of Pbx-recognition elements. Oncogene, 1997, 14, 2521-2531.	vidence	41
81	Both Pbx1 and E2A-Pbx1 Bind the DNA Motif ATCAATCAA Cooperatively with the Products of Multiple Murine <i>Hox</i> Genes, Some of Which Are Themselves Oncogenes. Molecular and Cellular Biology, 1995, 15, 3786-3795.	2.3	145
82	The Pentapeptide Motif of Hox Proteins Is Required for Cooperative DNA Binding with Pbx1, Physically Contacts Pbx1, and Enhances DNA Binding by Pbx1. Molecular and Cellular Biology, 1995, 15, 5811-5819.	2.3	154
83	Gene Expression in a Swine Model of Right Ventricular Hypertrophy: Intercellular Adhesion Molecule, Vascular Endothelial Growth Factor and Plasminogen Activators are Upregulated during Pressure Overload. Journal of Molecular and Cellular Cardiology, 1995, 27, 1427-1441.	1.9	31