
Morris D Argyle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2122241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flow-Through Atmospheric Pressure-Atomic Layer Deposition Reactor for Thin-Film Deposition in Capillary Columns. Analytical Chemistry, 2022, 94, 7483-7491.	6.5	6
2	Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature. Green Energy and Environment, 2021, 6, 938-951.	8.7	26
3	Advance in Using Plasma Technology for Modification or Fabrication of Carbonâ€Based Materials and Their Applications in Environmental, Material, and Energy Fields. Advanced Functional Materials, 2021, 31, 2006287.	14.9	55
4	A new holder/container with a porous cover for atomic layer deposition on particles, with transport analysis and detailed characterization of the resulting materials. Surface and Interface Analysis, 2021, 53, 156-166.	1.8	1
5	Metal–support interactions in Fe–Cu–K admixed with SAPO-34 catalysts for highly selective transformation of CO ₂ and H ₂ into lower olefins. Journal of Materials Chemistry A, 2021, 9, 21877-21887.	10.3	11
6	The effects of doping alumina with silica in alumina-supported NiO catalysts for oxidative dehydrogenation of ethane. Microporous and Mesoporous Materials, 2020, 293, 109799.	4.4	15
7	Effects of mixture of CO2 /CH4 as pyrolysis atmosphere on pine wood pyrolysis products. Renewable Energy, 2020, 162, 1243-1254.	8.9	20
8	Chemical and Thermal Sintering of Supported Metals with Emphasis on Cobalt Catalysts During Fischer–Tropsch Synthesis. Chemical Reviews, 2020, 120, 4455-4533.	47.7	100
9	0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide Nanowires Supported NiCoHydroxide Nanosheets. ChemElectroChem, 2020, 7, 3089-3097.	3.4	10
10	Mechanism and catalytic performance for direct dimethyl ether synthesis by CO2 hydrogenation over CuZnZr/ferrierite hybrid catalyst. Journal of Environmental Sciences, 2020, 92, 106-117.	6.1	37
11	A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal. Journal of Cleaner Production, 2020, 265, 121786.	9.3	12
12	CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10, 5698.	12.8	571
13	Effects of Ag promotion and preparation method on cobalt Fischer-Tropsch catalysts supported on silica-modified alumina. Journal of Catalysis, 2018, 362, 118-128.	6.2	16
14	Effect of different alumina supports on performance of cobalt Fischer-Tropsch catalysts. Journal of Catalysis, 2018, 359, 92-100.	6.2	57
15	Low Temperature Oxidative Dehydrogenation of Ethane by Ce-Modified NiNb Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 5234-5240.	3.7	14
16	Commemorative Issue in Honor of Professor Calvin H. Bartholomew's 75th Birthday. Catalysts, 2018, 8, 533.	3.5	0
17	In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study. Catalysts, 2018, 8, 63.	3.5	8
18	A cost-effective approach to realization of the efficient methane chemical-looping combustion by using coal fly ash as a support for oxygen carrier. Applied Energy, 2018, 230, 393-402.	10.1	16

MORRIS D ARGYLE

#	Article	IF	CITATIONS
19	Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review. Progress in Energy and Combustion Science, 2018, 67, 188-205.	31.2	135
20	Catalytic gasification of a Powder River Basin coal with CO2 and H2O mixtures. Fuel Processing Technology, 2017, 161, 145-154.	7.2	19
21	Effect of Drying Temperature on Iron Fischer-Tropsch Catalysts Prepared by Solvent Deficient Precipitation. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	4
22	On the kinetics and mechanism of Fischer–Tropsch synthesis on a highly active iron catalyst supported on silica-stabilized alumina. Catalysis Today, 2016, 261, 67-74.	4.4	14
23	Advances in Catalyst Deactivation and Regeneration. Catalysts, 2015, 5, 949-954.	3.5	28
24	Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts, 2015, 5, 145-269.	3.5	1,213
25	CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst. Applied Energy, 2015, 145, 295-305.	10.1	74
26	An optimized simulation model for iron-based Fischer–Tropsch catalyst design: Transfer limitations as functions of operating and design conditions. Chemical Engineering Journal, 2015, 263, 268-279.	12.7	33
27	Field Application of Accelerated Mineral Carbonation. Minerals (Basel, Switzerland), 2014, 4, 191-207.	2.0	23
28	Catalytic CH4 reforming with CO2 over activated carbon based catalysts. Applied Catalysis A: General, 2014, 469, 387-397.	4.3	59
29	Cobalt Fischer–Tropsch Catalyst Deactivation Modeled Using Generalized Power Law Expressions. Topics in Catalysis, 2014, 57, 415-429.	2.8	50
30	Characterization of the mechanism of gasification of a powder river basin coal with a composite catalyst for producing desired syngases and liquids. Applied Catalysis A: General, 2014, 475, 116-126.	4.3	23
31	A kinetic study on the structural and functional roles of lanthana in iron-based high temperature water–gas shift catalysts. International Journal of Hydrogen Energy, 2014, 39, 7306-7317.	7.1	13
32	Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification. Fuel, 2014, 116, 341-349.	6.4	63
33	Effects of preparation variables on an alumina-supported FeCuK Fischer–Tropsch catalyst. Catalysis Science and Technology, 2014, 4, 4289-4300.	4.1	15
34	The effects of bimetallic Co–Ru nanoparticles on Co/RuO 2 /Al 2 O 3 catalysts for the water gas shift and methanation. International Journal of Hydrogen Energy, 2014, 39, 14808-14816.	7.1	19
35	Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant. Thermochimica Acta, 2014, 589, 1-10.	2.7	55
36	H2 and COx generation from coal gasification catalyzed by a cost-effective iron catalyst. Applied Catalysis A: General, 2013, 464-465, 207-217.	4.3	50

MORRIS D ARGYLE

#	Article	IF	CITATIONS
37	Catalytic regeneration of mercury sorbents. Journal of Hazardous Materials, 2013, 262, 642-648.	12.4	14
38	Catalytic gasification of a Powder River Basin coal. Fuel, 2013, 103, 161-170.	6.4	73
39	Adsorption of Mercury with Modified Thief Carbons. Journal of Environmental Engineering, ASCE, 2012, 138, 386-391.	1.4	9
40	Desorption Kinetics of the Monoethanolamine/Macroporous TiO ₂ -Based CO ₂ Separation Process. Energy & Fuels, 2011, 25, 2988-2996.	5.1	29
41	Supported Monoethanolamine for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2011, 50, 11343-11349.	3.7	24
42	Simultaneous capture and mineralization of coal combustion flue gas carbon dioxide (CO2). Energy Procedia, 2011, 4, 1574-1583.	1.8	59
43	High temperature water gas shift catalysts with alumina. Applied Catalysis A: General, 2010, 379, 15-23.	4.3	46
44	Application of Green Chemistry in Energy Production. Journal of Physical Chemistry A, 2010, 114, 3743-3743.	2.5	3
45	Energy efficiency of hydrogen sulfide decomposition in a pulsed corona discharge reactor. Chemical Engineering Science, 2009, 64, 4826-4834.	3.8	35
46	Progresses Made in Coal-Based Energy and Fuel Production. Energy & Fuels, 2009, 23, 4709-4709.	5.1	2
47	Optical emission study of nonthermal plasma confirms reaction mechanisms involving neutral rather than charged species. Journal of Applied Physics, 2007, 101, 033303.	2.5	25
48	Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor. Chemical Engineering Science, 2007, 62, 2216-2227.	3.8	75
49	Effect of CO on NO and N2O conversions in nonthermal argon plasma. Journal of Applied Physics, 2006, 99, 113302.	2.5	21
50	Methane conversion in pulsed corona discharge reactors. Chemical Engineering Journal, 2006, 125, 67-79.	12.7	59
51	The effect of gas pressure on NO conversion energy efficiency in nonthermal nitrogen plasma. Chemical Engineering Science, 2005, 60, 1927-1937.	3.8	14
52	Effect of reactor configuration on nitric oxide conversion in nitrogen plasma. AICHE Journal, 2005, 51, 1813-1821.	3.6	19
53	Effect of oxygen on nonthermal plasma reactions of nitrogen oxides in nitrogen. AICHE Journal, 2005, 51, 1800-1812.	3.6	87
54	Effect of CO2on Nonthermal-Plasma Reactions of Nitrogen Oxides in N2. 1. PPM-Level Concentrations. Industrial & Engineering Chemistry Research, 2005, 44, 3925-3934.	3.7	20

MORRIS D ARGYLE

#	Article	IF	CITATIONS
55	Effect of CO2on Nonthermal-Plasma Reactions of Nitrogen Oxides in N2. 2. Percent-Level Concentrations. Industrial & Engineering Chemistry Research, 2005, 44, 3935-3946.	3.7	11
56	In situ UVâ^'Visible Spectroscopic Measurements of Kinetic Parameters and Active Sites for Catalytic Oxidation of Alkanes on Vanadium Oxidesâ€. Journal of Physical Chemistry B, 2005, 109, 2414-2420.	2.6	42
57	Extent of Reduction of Vanadium Oxides during Catalytic Oxidation of Alkanes Measured by in-Situ UVâ~'Visible Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 2345-2353.	2.6	84
58	N Atom Radicals and N2(A3â~u+) Found To Be Responsible for Nitrogen Oxides Conversion in Nonthermal Nitrogen Plasma. Industrial & Engineering Chemistry Research, 2004, 43, 5077-5088.	3.7	51
59	Effects of O2Concentration on the Rate and Selectivity in Oxidative Dehydrogenation of Ethane Catalyzed by Vanadium Oxide:Â Implications for O2Staging and Membrane Reactors. Industrial & Engineering Chemistry Research, 2003, 42, 5462-5466.	3.7	16
60	In situ UV-visible assessment of extent of reduction during oxidation reactions on oxide catalysts. Chemical Communications, 2003, , 2082.	4.1	20
61	Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts. Journal of Physical Chemistry B, 2002, 106, 5421-5427.	2.6	114
62	Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. Journal of Catalysis, 2002, 208, 139-149.	6.2	298
63	Results And Analysis Of A Required Senior Exam To Assess Learning Of Course Competencies , 0, , .		Ο
64	A New Assessment Method to Easily Identify Areas Needing Improvement in Course-level Learning Outcomes. , 0, , .		1
65	Developing and Assessing Leadership in Engineering Students. , 0, , .		1