
Yasumoto Nakazawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2122126/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Silk fibroin/polyurethane patch implantation in hyperglycemic rat model. Journal of Biomaterials Applications, 2021, 36, 701-713.	2.4	2
2	A novel gradient and multilayered sheet with a silk fibroin/polyvinyl alcohol core–shell structure for bioabsorbable arterial grafts. Journal of Biomedical Materials Research - Part A, 2021, , .	4.0	3
3	Solid-state and time domain NMR to elucidate degradation behavior of thermally aged poly (urea-urethane). Polymer Degradation and Stability, 2020, 172, 109052.	5.8	4
4	Silk fibroin-based vascular repairing sheet with angiogenic-promoting activity of SVVYGLR peptide regenerated the damaged vascular in rats. Journal of Biomaterials Applications, 2020, , 088532822092866.	2.4	6
5	Structure Water-Solubility Relationship in α-Helix-Rich Films Cast from Aqueous and 1,1,1,3,3,3-Hexafluoro-2-Propanol Solutions of S. c. ricini Silk Fibroin. Molecules, 2019, 24, 3945.	3.8	6
6	Determination of limiting values of 1H spin-spin relaxation time to assess lifetime of thermally aged acrylonitrile butadiene rubber. Polymer Degradation and Stability, 2019, 162, 12-21.	5.8	4
7	Aggregation State of Residual α-Helices and Their Influence on Physical Properties of S. c. ricini Native Fiber. Molecules, 2019, 24, 3741.	3.8	3
8	Development of a new surgical sheet containing both silk fibroin and thermoplastic polyurethane for cardiovascular surgery. Surgery Today, 2018, 48, 486-494.	1.5	11
9	Compatibility Evaluation of Non-Woven Sheet Composite of Silk Fibroin and Polyurethane in the Wet State. Polymers, 2018, 10, 874.	4.5	18
10	Evaluation as Biomaterials of Silk Fibroin Degummed by Different Method. Kobunshi Ronbunshu, 2018, 75, 54-60.	0.2	0
11	Fabrication and Characterization of Elastin-Crosslinked Silk Fibroin Material for Tissue Engineering. Kobunshi Ronbunshu, 2018, 75, 80-83.	0.2	0
12	Packing arrangement of ¹³ C selectively labeled sequence model peptides of Samia cynthia ricini silk fibroin fibers studied by solid-state NMR. Physical Chemistry Chemical Physics, 2017, 19, 13379-13386.	2.8	14
13	Solid-state NMR studies for the development of non-woven biomaterials based on silk fibroin and polyurethane. Polymer Journal, 2017, 49, 583-586.	2.7	13
14	Relationship between structure and physical strength of silk fibroin nanofiber sheet depending on insolubilization treatment. Journal of Applied Polymer Science, 2017, 134, 45560.	2.6	6
15	The effect of a silk Fibroin/Polyurethane blend patch on rat Vessels. Organogenesis, 2017, 13, 115-124.	1.2	17
16	Silk fibroin-Pellethane® cardiovascular patches: Effect of silk fibroin concentration on vascular remodeling in rat model. Journal of Materials Science: Materials in Medicine, 2017, 28, 191.	3.6	37
17	Fabrication Scheme for Obtaining Transparent, Flexible, and Water-Insoluble Silk Films from Apparently Dissolved Silk-Gland Fibroin of <i>Bombyx mori</i> Silkworm. ACS Biomaterials Science and Engineering, 2017, 3, 3207-3214.	5.2	7
18	Studies on the potential risk of amyloidosis from exposure to silk fibroin. Biomedical Materials (Bristol), 2016, 11, 065010.	3.3	10

#	Article	IF	CITATIONS
19	Evaluation of sealability for aged rubber seals by spin–spin relaxation time. Polymer Testing, 2016, 49, 147-155.	4.8	22
20	Development of Tissue-Engineered Silk Fibroin-Based Materials for Cardiovascular Devices. Journal of Fiber Science and Technology, 2016, 72, P-294-P-294.	0.0	0
21	Recombinant silk fibroin incorporated cell-adhesive sequences produced by transgenic silkworm as a possible candidate for use in vascular graft. Journal of Materials Chemistry B, 2014, 2, 7375-7383.	5.8	29
22	The Silk I and Lamella Structures of (Ala-Gly)15 as the Model of Bombyx mori Silk Fibroin Studied with Solid State NMR. Biologically-inspired Systems, 2014, , 49-68.	0.2	14
23	ā,¨āf¬ā,¯āf^āfā,¹āf"āf‹āf³ā,°æ³•ā«ā,`ā,‹çµ¹ï¼ēfēfªā,¦āf¬ā,¿āf³å°å£å¾"ä≌å·¥è;€ç®jā®é–‹ç™º ï¼^第 25 å·»	ç¬-0 : Đ啿	޲èð⁄4‰ï¹⁄4%
24	Bombyx mori silk fibroin scaffolds for bone regeneration studied by bone differentiation experiment. Journal of Bioscience and Bioengineering, 2013, 115, 575-578.	2.2	26
25	Silk structure studied with nuclear magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, 69, 23-68.	7.5	88
26	Elucidating silk structure using solid-state NMR. Soft Matter, 2013, 9, 11440.	2.7	65
27	Smallâ€Diameter Silk Vascular Grafts (3 mm Diameter) with a Doubleâ€Raschel Knitted Silk Tube Coated with Silk Fibroin Sponge. Advanced Healthcare Materials, 2013, 2, 361-368.	7.6	73
28	Colored Fluorescent Silk Made by Transgenic Silkworms. Advanced Functional Materials, 2013, 23, 5232-5239.	14.9	82
29	Transgenics: Colored Fluorescent Silk Made by Transgenic Silkworms (Adv. Funct. Mater. 42/2013). Advanced Functional Materials, 2013, 23, 5218-5218.	14.9	1
30	Development of silk/polyurethane small-diameter vascular graft by electrospinning. Seikei-Kakou, 2013, 25, 181-187.	0.0	6
31	A two-dimensional spin-diffusion NMR study on the local structure of a water-soluble model peptide for Nephila clavipes dragline silk (MaSp1) before and after spinning. Polymer Journal, 2012, 44, 913-917.	2.7	3
32	Structural characterization of silk-polyurethane composite material for biomaterials using solid-state NMR. Polymer Journal, 2012, 44, 802-807.	2.7	12
33	Characterization of a Ca binding-amphipathic silk-like protein and peptide with the sequence (Glu) ₈ (Ala-Gly-Ser-Gly-Ala-Gly) ₄ with potential for bone repair. Soft Matter, 2012, 8, 741-748.	2.7	12
34	NMR Analysis of the Fibronectin Cell-Adhesive Sequence, Arg-Gly-Asp, in a Recombinant Silk-Like Protein and a Model Peptide. Biomacromolecules, 2011, 12, 3910-3916.	5.4	15
35	Development of Small-Diameter Vascular Grafts Based on Silk Fibroin Fibers from Bombyx mori for Vascular Regeneration. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 195-206.	3.5	62
36	The Interaction of Aβ(1-40) Peptide with Lipid Bilayers and Ganglioside As Studied by Multinuclear Solid-State NMR. ACS Symposium Series, 2011, , 299-316.	0.5	1

ΥΑSUMOTO ΝΑΚΑΖΑΨΑ

#	Article	IF	CITATIONS
37	NMR Characterization and Product Design of Novel Silk-Based Biomaterials. ACS Symposium Series, 2011, , 281-297.	0.5	0
38	Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta. Journal of Artificial Organs, 2011, 14, 89-99.	0.9	76
39	Structural Analysis and Application to Biomaterials of the Silk Fibroins. Kobunshi Ronbunshu, 2010, 67, 428-439.	0.2	1
40	Small-diameter vascular grafts of Bombyx mori silk fibroin prepared by a combination of electrospinning and sponge coating. Materials Letters, 2010, 64, 1786-1788.	2.6	40
41	Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. Journal of Vascular Surgery, 2010, 51, 155-164.	1.1	197
42	Structural Analysis of the Synthetic Peptide (Ala-Gly-Ser-Gly-Ala-Gly) ₅ , a Model for the Crystalline Domain of Bombyx mori Silk Fibroin, Studied with ¹³ C CP/MAS NMR, REDOR, and Statistical Mechanical Calculations. Macromolecules, 2010, 43, 9434-9440.	4.8	25
43	Development of the Tissue Engineered Medical Products Based on Silk Fibroin from Bombyx mori and Transgenic Silkworm. Journal of Fiber Science and Technology, 2009, 65, P.11-P.13.	0.0	2
44	The interaction of amyloid Aβ(1–40) with lipid bilayers and ganglioside as studied by 31P solid-state NMR. Chemistry and Physics of Lipids, 2009, 158, 54-60.	3.2	39
45	Structural Characterization of Silk-Based Water-Soluble Peptides (Glu) _{<i>n</i>} (Ala-Gly-Ser-Gly-Ala-Gly) ₄ (<i>n</i> = 4â^3) as a Mimic of <i>Bombyx mori</i> Silk Fibroin by ¹³ C Solid-State NMR. Macromolecules, 2009, 42, 8950-8958.	4.8	19
46	The Influence of Ser and Tyr Residues on the Structure of Bombyx Mori Silk Fibroin Studied Using High-resolution Solid-state 13C NMR Spectroscopy and 13C Selectively Labeled Model Peptides. Polymer Journal, 2008, 40, 184-185.	2.7	6
47	Lamellar Structure in Poly(Ala-Gly) Determined by Solid-State NMR and Statistical Mechanical Calculations. Journal of the American Chemical Society, 2007, 129, 5703-5709.	13.7	27
48	Solid-State NMR Analysis of (GA) ₃ S(AG) ₃ D(GA) ₃ S(AG) ₃ D(GA) _{3 a Peptide with a Lamellar Structure and a Calcium Binding Site, and Production of TS[(AG)₃D(GA)₃S]₁₆ in <i>Escherichia coli</i>. Macromolecules,}	3, 4.8	15
49	2007, 40, 8983-8990. Some Observations on the Structure and Function of the Spinning Apparatus in the SilkwormBombyxmori. Biomacromolecules, 2007, 8, 175-181.	5.4	143
50	Structural Analysis of Silk and Application of Silk to Biomaterials. Journal of Fiber Science and Technology, 2007, 63, P.261-P.265.	0.0	3
51	Conformational Study of Silk-Like Peptides Containing the Calcium-Binding Sequence from Calbindin D9kUsing13C CP/MAS NMR Spectroscopy. Biomacromolecules, 2006, 7, 627-634.	5.4	10
52	Structural Analysis of Alanine Tripeptide with Antiparallel and Parallel β-Sheet Structures in Relation to the Analysis of Mixed β-Sheet Structures inSamiacynthiariciniSilk Protein Fiber Using Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 6231-6238.	13.7	62
53	Determination of Structures of Silk Fibroins from Silkworms and Spiders using Solid-state NMR. Kobunshi Ronbunshu, 2006, 63, 707-719.	0.2	4
54	Orientation of the Antimicrobial Peptide, Cecropin A–Magainin 2 Hybrid, in a Lipid Bilayer Studied by 15N Solid-State NMR. Polymer Journal, 2005, 37, 229-233.	2.7	0

#	Article	IF	CITATIONS
55	Evidence from13C solid-state NMR spectroscopy for a lamella structure in an alanine-glycine copolypeptide: A model for the crystalline domain ofBombyx morisilk fiber. Protein Science, 2005, 14, 2654-2657.	7.6	35
56	Structure of Model Peptides Based onNephilaclavipesDragline Silk Spidroin (MaSp1) Studied by13C Cross Polarization/Magic Angle Spinning NMR. Biomacromolecules, 2005, 6, 3220-3226.	5.4	25
57	13C Solid-State NMR Study of Structural Heterogeneity in Peptides Containing Both Polyalanine and Repeated GGA Sequences as a Local Structural Model ofNephilaclavipesDragline Silk (Spidroin 1). Macromolecules, 2005, 38, 3356-3363.	4.8	31
58	Structure and Structural Changes of the Silk Fibroin fromSamia cynthia ricini Using Nuclear Magnetic Resonance Spectroscopy. Macromolecular Bioscience, 2004, 4, 175-185.	4.1	27
59	Structures of Bombyx mori and Samia cynthia Ricini Silk Fibroins Studied with Solid-State NMR. ChemInform, 2004, 35, no.	0.0	0
60	Structures ofBombyxmoriandSamiacynthiariciniSilk Fibroins Studied with Solid-State NMR. Biomacromolecules, 2004, 5, 680-688.	5.4	57
61	Tightly winding structure of sequential model peptide for repeated helical region in Samia cynthia ricini silk fibroin studied with solid-state NMR. Protein Science, 2003, 12, 666-671.	7.6	41
62	Structure Determination of a Peptide Model of the Repeated Helical Domain inSamiacynthiariciniSilk Fibroin before Spinning by a Combination of Advanced Solid-State NMR Methods. Journal of the American Chemical Society, 2003, 125, 7230-7237.	13.7	73
63	Molecular Dynamics Simulation of Conformational Change of Poly(Ala-Gly) from Silk I to Silk ΙΙ in Relation to Fiber Formation Mechanism ofBombyxmoriSilk Fibroin. Macromolecules, 2003, 36, 6766-6772.	4.8	51
64	Synthesis and Characterization of Chimeric Silkworm Silk. Biomacromolecules, 2003, 4, 815-820.	5.4	37
65	High-Resolution13C CP/MAS NMR Study on Structure and Structural Transition ofAntheraeapernyiSilk Fibroin Containing Poly(l-alanine) and Gly-Rich Regions. Macromolecules, 2002, 35, 2393-2400.	4.8	53
66	The role of irregular unit, GAAS, on the secondary structure ofBombyx morisilk fibroin studied with13C CP/MAS NMR and wide-angle X-ray scattering. Protein Science, 2002, 11, 1873-1877.	7.6	59
67	Heterogeneous exchange behavior ofSamia cynthia ricinisilk fibroin during helix-coil transition studied with13C NMR. FEBS Letters, 2002, 529, 188-192.	2.8	32
68	Determination of intermolecular distance for a model peptide ofBombyx mori silk fibroin, GAGAG, with rotational echo double resonance. Biopolymers, 2002, 64, 80-85.	2.4	14
69	A repeated β-turn structure in Poly(Ala-Cly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance11Edited by M. F. Summers. Journal of Molecular Biology, 2001, 306, 291-305.	4.2	230
70	Structure ofBombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and13C cross-polarization/magic angle spinning NMR. Biopolymers, 2001, 58, 521-525.	2.4	86
71	Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and 13C cross-polarization/magic angle spinning NMR. , 2001, 58, 521.		1
72	A 13C NMR study on the structural change of silk fibroin from Samia cynthia ricini. Chemical Physics Letters, 1999, 311, 362-366.	2.6	25