List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2121897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene Expression in Fixed Tissues and Outcome in Hepatocellular Carcinoma. New England Journal of Medicine, 2008, 359, 1995-2004.	27.0	1,148
2	Integrative Transcriptome Analysis Reveals Common Molecular Subclasses of Human Hepatocellular Carcinoma. Cancer Research, 2009, 69, 7385-7392.	0.9	978
3	Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews, 2017, 121, 27-42.	13.7	943
4	Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 2009, 41, 843-848.	21.4	742
5	Focal Gains of <i>VEGFA</i> and Molecular Classification of Hepatocellular Carcinoma. Cancer Research, 2008, 68, 6779-6788.	0.9	589
6	Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut, 2012, 61, 847-854.	12.1	518
7	Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. Journal of Hepatology, 2018, 68, 526-549.	3.7	506
8	SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature, 2011, 470, 269-273.	27.8	462
9	Subclass Mapping: Identifying Common Subtypes in Independent Disease Data Sets. PLoS ONE, 2007, 2, e1195.	2.5	437
10	Combining Clinical, Pathology, and Gene Expression Data to Predict Recurrence of Hepatocellular Carcinoma. Gastroenterology, 2011, 140, 1501-1512.e2.	1.3	389
11	A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. Journal of Hepatology, 2016, 65, 579-588.	3.7	371
12	DNA methylationâ€based prognosis and epidrivers in hepatocellular carcinoma. Hepatology, 2015, 61, 1945-1956.	7.3	367
13	Cancer biomarker discovery and validation. Translational Cancer Research, 2015, 4, 256-269.	1.0	354
14	A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. Journal of Hepatology, 2018, 69, 385-395.	3.7	330
15	Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology, 2014, 59, 1577-1590.	7.3	290
16	Estrogen-Dependent Signaling in a Molecularly Distinct Subclass of Aggressive Prostate Cancer. Journal of the National Cancer Institute, 2008, 100, 815-825.	6.3	286
17	Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nature Immunology, 2015, 16, 1235-1244.	14.5	278
18	Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature Genetics, 2011, 43, 964-968.	21.4	270

#	Article	IF	CITATIONS
19	Molecular Classification and Novel Targets in Hepatocellular Carcinoma: Recent Advancements. Seminars in Liver Disease, 2010, 30, 035-051.	3.6	267
20	UHRF1 Overexpression Drives DNA Hypomethylation and Hepatocellular Carcinoma. Cancer Cell, 2014, 25, 196-209.	16.8	261
21	Wnt-Pathway Activation in Two Molecular Classes of Hepatocellular Carcinoma and Experimental Modulation by Sorafenib. Clinical Cancer Research, 2012, 18, 4997-5007.	7.0	251
22	Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment. PLoS ONE, 2010, 5, e15543.	2.5	249
23	Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma. Cell Metabolism, 2019, 29, 174-182.e5.	16.2	246
24	Massive parallel sequencing uncovers actionable FGFR2–PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nature Communications, 2015, 6, 6087.	12.8	240
25	Gene Expression Changes in an Animal Melanoma Model Correlate with Aggressiveness of Human Melanoma Metastases. Molecular Cancer Research, 2008, 6, 760-769.	3.4	216
26	YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression. Cell Reports, 2015, 10, 1692-1707.	6.4	213
27	IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. Journal of Hepatology, 2010, 52, 550-559.	3.7	211
28	Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. Journal of Hepatology, 2009, 51, 725-733.	3.7	206
29	Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut, 2017, 66, 1286-1296.	12.1	198
30	Prognostic Gene Expression Signature for Patients With Hepatitis C–Related Early-Stage Cirrhosis. Gastroenterology, 2013, 144, 1024-1030.	1.3	195
31	HCV-Induced Epigenetic Changes Associated With Liver Cancer Risk Persist After Sustained Virologic Response. Gastroenterology, 2019, 156, 2313-2329.e7.	1.3	184
32	Combination therapy for hepatocellular carcinoma: Additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib. Journal of Hepatology, 2012, 56, 1343-1350.	3.7	181
33	Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. Journal of Hepatology, 2014, 61, S79-S90.	3.7	181
34	Molecular Liver Cancer Prevention in Cirrhosis by Organ Transcriptome Analysis and Lysophosphatidic Acid Pathway Inhibition. Cancer Cell, 2016, 30, 879-890.	16.8	172
35	Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut, 2017, 66, 530-540.	12.1	161
36	Interleukin-1β gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection. Hepatology, 2003, 37, 65-71.	7.3	154

#	Article	IF	CITATIONS
37	β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. Journal of Hepatology, 2015, 63, 141-147.	3.7	142
38	mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer. Journal of Clinical Oncology, 2011, 29, 2391-2396.	1.6	140
39	HCC surveillance improves early detection, curative treatment receipt, and survival in patients with cirrhosis: A meta-analysis. Journal of Hepatology, 2022, 77, 128-139.	3.7	139
40	Gene-expression signature of vascular invasion in hepatocellular carcinoma. Journal of Hepatology, 2011, 55, 1325-1331.	3.7	133
41	CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity. Gut, 2018, 67, 1493-1504.	12.1	131
42	A Targetable GATA2-IGF2 Axis Confers Aggressiveness in Lethal Prostate Cancer. Cancer Cell, 2015, 27, 223-239.	16.8	128
43	Hepatitis C virus-induced hepatocellular carcinoma. Clinical and Molecular Hepatology, 2015, 21, 105.	8.9	127
44	Vitamin K ₂ inhibits the growth and invasiveness of hepatocellular carcinoma cells via protein kinase A activation. Hepatology, 2004, 40, 243-251.	7.3	124
45	Cost-Effectiveness of Risk Score–Stratified Hepatocellular Carcinoma Screening in Patients with Cirrhosis. Clinical and Translational Gastroenterology, 2017, 8, e101.	2.5	124
46	Hepatitis C-related hepatocellular carcinoma in the era of new generation antivirals. BMC Medicine, 2017, 15, 52.	5.5	116
47	New Strategies in Hepatocellular Carcinoma: Genomic Prognostic Markers. Clinical Cancer Research, 2010, 16, 4688-4694.	7.0	114
48	Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Nature Communications, 2018, 9, 4962.	12.8	111
49	Unique Genomic Profile of Fibrolamellar Hepatocellular Carcinoma. Gastroenterology, 2015, 148, 806-818.e10.	1.3	109
50	A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut, 2016, 65, 1754-1764.	12.1	108
51	Recent Developments and Therapeutic Strategies against Hepatocellular Carcinoma. Cancer Research, 2019, 79, 4326-4330.	0.9	99
52	MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. European Radiology, 2020, 30, 3759-3769.	4.5	97
53	Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell, 2018, 174, 1200-1215.e20.	28.9	96
54	Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepatic Oncology, 2015, 2, 371-379.	4.2	95

#	Article	IF	CITATIONS
55	Clinicopathological indices to predict hepatocellular carcinoma molecular classification. Liver International, 2016, 36, 108-118.	3.9	93
56	Hepatocellular Carcinoma Demonstrates Heterogeneous Growth Patterns in a Multicenter Cohort of Patients With Cirrhosis. Hepatology, 2020, 72, 1654-1665.	7.3	93
57	International Liver Cancer Association (ILCA) White Paper on Biomarker Development for Hepatocellular Carcinoma. Gastroenterology, 2021, 160, 2572-2584.	1.3	91
58	Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization. Oncogene, 2005, 24, 7105-7113.	5.9	90
59	Topological and Functional Discovery in a Gene Coexpression Meta-Network of Gastric Cancer. Cancer Research, 2006, 66, 232-241.	0.9	83
60	The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation. Genes and Development, 2016, 30, 786-797.	5.9	78
61	The XBP1 Arm of the Unfolded Protein Response Induces Fibrogenic Activity in Hepatic Stellate Cells Through Autophagy. Scientific Reports, 2016, 6, 39342.	3.3	77
62	The role of GATA2 in lethal prostate cancer aggressiveness. Nature Reviews Urology, 2017, 14, 38-48.	3.8	71
63	Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus–Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology, 2019, 157, 537-551.e9.	1.3	71
64	A genomic and clinical prognostic index for hepatitis C-related early-stage cirrhosis that predicts clinical deterioration. Gut, 2015, 64, 1296-1302.	12.1	70
65	Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Scientific Reports, 2017, 7, 2452.	3.3	70
66	A research agenda for curing chronic hepatitis B virus infection. Hepatology, 2018, 67, 1127-1131.	7.3	70
67	Gene Signatures in the Management of Hepatocellular Carcinoma. Seminars in Oncology, 2012, 39, 473-485.	2.2	68
68	Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver transplantation. Journal of Hepatology, 2015, 63, 1368-1377.	3.7	64
69	UDP-Glucuronosyltransferase 1A7 Genetic Polymorphisms Are Associated with Hepatocellular Carcinoma in Japanese Patients with Hepatitis C Virus Infection. Clinical Cancer Research, 2004, 10, 2441-2446.	7.0	63
70	Chronic hepatitis C virus infection and pathogenesis of hepatocellular carcinoma. Current Opinion in Virology, 2016, 20, 99-105.	5.4	62
71	Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases. Experimental and Molecular Medicine, 2017, 49, e396-e396.	7.7	61
72	Using Big Data to Discover Diagnostics and Therapeutics forÂGastrointestinal and Liver Diseases. Gastroenterology, 2017, 152, 53-67.e3.	1.3	61

#	Article	IF	CITATIONS
73	miR-135a-5p-mediated downregulation of protein tyrosine phosphatase receptor delta is a candidate driver of HCV-associated hepatocarcinogenesis. Gut, 2018, 67, 953-962.	12.1	59
74	Large-scale search of single nucleotide polymorphisms for hepatocellular carcinoma susceptibility genes in patients with hepatitis C. Hepatology, 2005, 42, 846-853.	7.3	57
75	Altered serum acylcarnitine profile is associated with the status of nonalcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma. Scientific Reports, 2019, 9, 10663.	3.3	57
76	Targeting clinical epigenetic reprogramming for chemoprevention of metabolic and viral hepatocellular carcinoma. Gut, 2021, 70, 157-169.	12.1	57
77	Proteomic analysis of sera from hepatocellular carcinoma patients after radiofrequency ablation treatment. Proteomics, 2005, 5, 4287-4295.	2.2	55
78	Mice With Increased Numbers of Polyploid Hepatocytes Maintain Regenerative Capacity But Develop Fewer Hepatocellular Carcinomas Following Chronic Liver Injury. Gastroenterology, 2020, 158, 1698-1712.e14.	1.3	55
79	Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges. Current Cancer Drug Targets, 2012, 12, 1129-59.	1.6	55
80	Depicting the role of TP53 in hepatocellular carcinoma progression. Journal of Hepatology, 2011, 55, 724-725.	3.7	54
81	Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development (Cambridge), 2017, 144, 2925-2939.	2.5	53
82	Use of big data in drug development for precision medicine: an update. Expert Review of Precision Medicine and Drug Development, 2019, 4, 189-200.	0.7	51
83	DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in <i>uhrf1</i> mutant zebrafish embryos. Development (Cambridge), 2015, 142, 510-21.	2.5	49
84	Nonalcoholic Steatohepatitis Is Associated With Increased Mortality in Obese Patients Undergoing Bariatric Surgery. Clinical Gastroenterology and Hepatology, 2016, 14, 1619-1628.	4.4	47
85	Decreased miR122 in hepatocellular carcinoma leads to chemoresistance with increased arginine. Oncotarget, 2015, 6, 8339-8352.	1.8	43
86	Hepatic gene expression profiles associated with fibrosis progression and hepatocarcinogenesis in hepatitis C patients. World Journal of Gastroenterology, 2005, 11, 1995.	3.3	43
87	Chronic liver disease in the extremely elderly of 80 years or more: clinical characteristics, prognosis and patient survival analysis. Journal of Hepatology, 1999, 31, 860-866.	3.7	42
88	Comparative Epigenomic Profiling of the DNA Methylome in Mouse and Zebrafish Uncovers High Interspecies Divergence. Frontiers in Genetics, 2016, 7, 110.	2.3	42
89	Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients WithÂSevere Alcoholic Hepatitis. Gastroenterology, 2018, 154, 965-975.	1.3	41
90	Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. European Radiology, 2017, 27, 4472-4481.	4.5	40

#	Article	IF	CITATIONS
91	Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Science Translational Medicine, 2022, 14, .	12.4	40
92	Carcinogen-induced hepatic tumors in KLF6+/â^' mice recapitulate aggressive human hepatocellular carcinoma associated with p53 pathway deregulation. Hepatology, 2011, 54, 522-531.	7.3	39
93	Transcriptome Profiling of Archived Sectioned Formalin-Fixed Paraffin-Embedded (AS-FFPE) Tissue for Disease Classification. PLoS ONE, 2014, 9, e86961.	2.5	39
94	Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype. Neuro-Oncology, 2015, 17, 1486-1496.	1.2	39
95	Prevention of Hepatocellular Carcinoma: Potential Targets, Experimental Models, and Clinical Challenges. Current Cancer Drug Targets, 2012, 12, 1129-1159.	1.6	39
96	Relevance network between chemosensitivity and transcriptome in human hepatoma cells. Molecular Cancer Therapeutics, 2003, 2, 199-205.	4.1	39
97	Molecular profiling to predict hepatocellular carcinoma outcome. Expert Review of Gastroenterology and Hepatology, 2009, 3, 101-103.	3.0	37
98	In vitro modeling of hepatocellular carcinoma molecular subtypes for anti-cancer drug assessment. Experimental and Molecular Medicine, 2018, 50, e419-e419.	7.7	37
99	Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Reports, 2016, 17, 1357-1368.	6.4	34
100	Proteomic analysis of the TGF-Î ² signaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad4 expression. Biochemical and Biophysical Research Communications, 2004, 318, 289-296.	2.1	33
101	Risk of recurrence in hepatitis B-related hepatocellular carcinoma: Impact of viral load in late recurrence. Journal of Hepatology, 2009, 51, 842-844.	3.7	33
102	Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis. Journal of Clinical Investigation, 2022, 132, .	8.2	33
103	Expression Profiling of Archival Tumors for Long-term Health Studies. Clinical Cancer Research, 2012, 18, 6136-6146.	7.0	32
104	Genomic Analysis Revealed New Oncogenic Signatures in TP53-Mutant Hepatocellular Carcinoma. Frontiers in Genetics, 2018, 9, 2.	2.3	32
105	A blood-based prognostic liver secretome signature and long-term hepatocellular carcinoma risk in advanced liver fibrosis. Med, 2021, 2, 836-850.e10.	4.4	31
106	Interleukin-15 receptor $\hat{I}\pm$ on hepatic stellate cells regulates hepatic fibrogenesis in mice. Journal of Hepatology, 2016, 65, 344-353.	3.7	30
107	MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect. ELife, 2017, 6, .	6.0	30
108	Pioglitazone Reduces Hepatocellular Carcinoma Development in Two Rodent Models of Cirrhosis. Journal of Gastrointestinal Surgery, 2019, 23, 101-111.	1.7	30

#	Article	IF	CITATIONS
109	Molecular subclasses of hepatocellular carcinoma predict sensitivity to fibroblast growth factor receptor inhibition. International Journal of Cancer, 2016, 138, 1494-1505.	5.1	29
110	Transcriptome-based repurposing of apigenin as a potential anti-fibrotic agent targeting hepatic stellate cells. Scientific Reports, 2017, 7, 42563.	3.3	29
111	Krüppel-like factor 6 is a transcriptional activator of autophagy in acute liver injury. Scientific Reports, 2017, 7, 8119.	3.3	29
112	Inherited hepatocellular carcinoma. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2010, 24, 725-734.	2.4	28
113	Use of big data in drug development for precision medicine. Expert Review of Precision Medicine and Drug Development, 2016, 1, 245-253.	0.7	28
114	Persisting risk of hepatocellular carcinoma after hepatitis C virus cure monitored by a liver transcriptome signature. Hepatology, 2017, 66, 1344-1346.	7.3	28
115	High Keratin 8/18 Ratio Predicts Aggressive Hepatocellular Cancer Phenotype. Translational Oncology, 2019, 12, 256-268.	3.7	28
116	Risk Factors, Pathogenesis, and Strategies for Hepatocellular Carcinoma Prevention: Emphasis on Secondary Prevention and Its Translational Challenges. Journal of Clinical Medicine, 2020, 9, 3817.	2.4	27
117	Epigallocatechin Gallate Induces Hepatic Stellate Cell Senescence and Attenuates Development of Hepatocellular Carcinoma. Cancer Prevention Research, 2020, 13, 497-508.	1.5	24
118	Vitamin K2 binds 17β-hydroxysteroid dehydrogenase 4 and modulates estrogen metabolism. Life Sciences, 2005, 76, 2473-2482.	4.3	22
119	A cell culture system for distinguishing hepatitis C viruses with and without liver cancer-related mutations in the viral core gene. Journal of Hepatology, 2015, 63, 1323-1333.	3.7	22
120	The autotaxin-lysophosphatidic acid pathway emerges as a therapeutic target to prevent liver cancer. Molecular and Cellular Oncology, 2017, 4, e1311827.	0.7	22
121	N-Glycosylation Patterns Correlate with Hepatocellular Carcinoma Genetic Subtypes. Molecular Cancer Research, 2021, 19, 1868-1877.	3.4	21
122	A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nature Communications, 2021, 12, 5525.	12.8	21
123	Thrombocytosis is associated with worse survival in patients with hepatocellular carcinoma. Liver International, 2020, 40, 2522-2534.	3.9	20
124	Molecular heterogeneity in hepatocellular carcinoma. Hepatic Oncology, 2018, 5, HEP10.	4.2	18
125	Tailored Algorithms for Hepatocellular Carcinoma Surveillance: Is One-Size-Fits-All Strategy Outdated?. Current Hepatology Reports, 2017, 16, 64-71.	0.9	17
126	Molecular Signature Predictive of Long-Term Liver Fibrosis Progression to Inform Antifibrotic Drug Development. Gastroenterology, 2022, 162, 1210-1225.	1.3	17

#	Article	IF	CITATIONS
127	Generic chemoprevention of hepatocellular carcinoma. Annals of the New York Academy of Sciences, 2019, 1440, 23-35.	3.8	16
128	Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease. Hepatology International, 2022, 16, 509-522.	4.2	16
129	Genomic risk of hepatitis C-related hepatocellular carcinoma. Journal of Hepatology, 2012, 56, 729-730.	3.7	15
130	Steatohepatitic Variant of Hepatocellular Carcinoma Is Associated With Both Alcoholic Steatohepatitis and Nonalcoholic Steatohepatitis. American Journal of Surgical Pathology, 2020, 44, 1406-1412.	3.7	15
131	Risk of Hepatocellular Carcinoma in Patients With Indeterminate (LI-RADS 3) Liver Observations. Clinical Gastroenterology and Hepatology, 2023, 21, 1091-1093.e3.	4.4	15
132	Difficulties in Conducting Controlled Trials in Radical Therapies for Nonadvanced Hepatocellular Carcinoma. Hepatology, 2000, 32, 877-881.	7.3	14
133	A simple combination of serum type IV collagen and prothrombin time to diagnose cirrhosis in patients with chronic active hepatitis C. Hepatology Research, 2004, 30, 214-220.	3.4	14
134	Induction and contribution of beta plateletâ€derived growth factor signalling by hepatic stellate cells to liver regeneration after partial hepatectomy in mice. Liver International, 2016, 36, 874-882.	3.9	14
135	Patient-derived Interstitial Fluids and Predisposition to Aggressive Sporadic Breast Cancer through Collagen Remodeling and Inactivation of p53. Clinical Cancer Research, 2017, 23, 5446-5459.	7.0	14
136	Changes in hepatic functional reserve after percutaneous tumor ablation for hepatocellular carcinoma: long-term follow up for 227 consecutive patients with a single lesion. Hepatology International, 2007, 1, 295-301.	4.2	13
137	Is Hepatocellular Cancer the Same Disease in Alcoholic andÂNonalcoholic Fatty Liver Diseases?. Gastroenterology, 2016, 150, 1710-1717.	1.3	13
138	Omicsâ€derived hepatocellular carcinoma risk biomarkers for precision care of chronic liver diseases. Hepatology Research, 2020, 50, 817-830.	3.4	13
139	Genomic profiling of cell lines for personalized targeted therapy for hepatocellular carcinoma. Hepatology, 2013, 58, 2207-2207.	7.3	12
140	Molecular prognostic prediction in liver cirrhosis. World Journal of Gastroenterology, 2015, 21, 10262.	3.3	12
141	Cell type-specific pharmacological kinase inhibition for cancer chemoprevention. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 317-325.	3.3	12
142	Gene signatureâ€MELD score and alcohol relapse determine longâ€ŧerm prognosis of patients with severe alcoholic hepatitis. Liver International, 2020, 40, 565-570.	3.9	12
143	Atorvastatin favorably modulates a clinical hepatocellular carcinoma risk gene signature. Hepatology Communications, 2022, 6, 2581-2593.	4.3	12
144	Cost-effectiveness of adjuvant interferon therapy after surgical resection of Hepatitis C-related hepatocellular carcinoma. Liver, 2002, 22, 479-485.	0.1	11

#	Article	IF	CITATIONS
145	GIGSEA: genotype imputed gene set enrichment analysis using GWAS summary level data. Bioinformatics, 2019, 35, 160-163.	4.1	11
146	A genome-wide gain-of-function screen identifies CDKN2C as a HBV host factor. Nature Communications, 2020, 11, 2707.	12.8	11
147	Host Genetics Predict Clinical Deterioration in HCV-Related Cirrhosis. PLoS ONE, 2014, 9, e114747.	2.5	11
148	Clinical and Molecular Prediction of Hepatocellular Carcinoma Risk. Journal of Clinical Medicine, 2020, 9, 3843.	2.4	10
149	Gene expressions associated with chemosensitivity in human hepatoma cells. Hepato-Gastroenterology, 2007, 54, 489-92.	0.5	10
150	Survival analysis tools in genomics research. Human Genomics, 2014, 8, 21.	2.9	9
151	Peroxidasin Deficiency Re-programs Macrophages Toward Pro-fibrolysis Function and Promotes Collagen Resolution in Liver. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1483-1509.	4.5	9
152	Identifying genes with differential expression in gemcitabine-resistant pancreatic cancer cells using comprehensive transcriptome analysis. Oncology Reports, 2005, 14, 1263-7.	2.6	9
153	Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia. Experimental Hematology, 2019, 79, 16-25.e3.	0.4	8
154	Restricted immunological and cellular pathways are shared by murine models of chronic alcohol consumption. Scientific Reports, 2020, 10, 2451.	3.3	8
155	High Neutrophil–Lymphocyte Ratio and Delta Neutrophil–Lymphocyte Ratio Are Associated with Increased Mortality in Patients with Hepatocellular Cancer. Digestive Diseases and Sciences, 2021, , 1.	2.3	8
156	miRâ€579â€3p Controls Hepatocellular Carcinoma Formation by Regulating the Phosphoinositide 3â€Kinase–Protein Kinase B Pathway in Chronically Inflamed Liver. Hepatology Communications, 2022, 6, 1467-1481.	4.3	8
157	Dose and Duration of Aspirin Use to Reduce Incident Hepatocellular Carcinoma. Hepatology, 2019, 70, 2216-2217.	7.3	7
158	Somatic mutation landscape reveals differential variability of cell-of-origin for primary liver cancer. Heliyon, 2020, 6, e03350.	3.2	7
159	Origin and interpretation of cancer transcriptome profiling: the essential role of the stroma in determining prognosis and drug resistance. EMBO Molecular Medicine, 2015, 7, 1385-1387.	6.9	6
160	Novel substituted aminothiazoles as potent and selective anti-hepatocellular carcinoma agents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5819-5824.	2.2	6
161	Risk Factors of Hepatocellular Carcinoma for Precision Personalized Care. Molecular and Translational Medicine, 2019, , 3-25.	0.4	6
162	A Blood-Based Prognostic Liver Secretome Signature Predicts Long-term Risk of Hepatic Decompensation in Cirrhosis. Clinical Gastroenterology and Hepatology, 2022, 20, e1188-e1191.	4.4	6

#	Article	IF	CITATIONS
163	Role of Hepatocyteâ€Derived Osteopontin in Liver Carcinogenesis. Hepatology Communications, 2022, 6, 692-709.	4.3	6
164	Addressing the Challenges of Hepatitis C Cure and Persistent Risk of Hepatocellular Carcinoma. Viruses, 2019, 11, 441.	3.3	5
165	Hepatocellular Carcinoma Risk Stratification by Genetic Profiling in Patients with Cirrhosis. Seminars in Liver Disease, 2019, 39, 153-162.	3.6	5
166	Brazilian cohort and genes encoding for drug-metabolizing enzymes and drug transporters. Pharmacogenomics, 2020, 21, 575-586.	1.3	5
167	Hepatic volumetry to predict adverse events in percutaneous ablation of hepatocellular carcinoma. Hepato-Gastroenterology, 2002, 49, 451-5.	0.5	5
168	Personalized management of hepatocellular carcinoma based on molecular information: Future prospects. Clinical Liver Disease, 2015, 5, 132-135.	2.1	4
169	Hepatocellular carcinoma chemoprevention by targeting the angiotensin-converting enzyme and EGFR transactivation. JCI Insight, 2022, 7, .	5.0	4
170	Prognostic gene signature profiles of hepatitis C-related early-stage liver cirrhosis. Genomics Data, 2014, 2, 361-362.	1.3	3
171	CXCR4 pathway associated with family history of melanoma. Cancer Causes and Control, 2014, 25, 125-132.	1.8	3
172	Plasma-Signature-Model for End-Stage Liver Disease Score to Predict Survival in Severe Alcoholic Hepatitis. Clinical Gastroenterology and Hepatology, 2022, 20, 651-657.	4.4	3
173	Tumor-derived molecular information and outcome in hepatocellular carcinoma. Journal of Hepatology, 2009, 51, 595-596.	3.7	2
174	Molecular epidemiology of hepatocellular carcinoma. Clinical Liver Disease, 2012, 1, 177-179.	2.1	2
175	Aspirin: Does it Have a Role for Chemoprevention of Hepatocellular Carcinoma?. Gastroenterology, 2019, 156, 1530-1531.	1.3	2
176	Viral Exposure Signature Associated with Liver Cancer Risk. Trends in Molecular Medicine, 2020, 26, 711-713.	6.7	2
177	Prognostic Gene Signatures for Hepatocellular Carcinoma: What Are We Measuring?. Annals of Surgical Oncology, 2013, 20, 3707-3708.	1.5	1
178	MPIC: Molecular Prognostic Indicators in Cirrhosis Database for Clinical Context-Specific in Silico Prognostic Biomarker Validation. Frontiers in Genetics, 2019, 10, 830.	2.3	1
179	Transcriptome-Guided Design of Physiological Multilineage Liver Organoids. Trends in Genetics, 2021, 37, 403-404.	6.7	1
180	Aged Budd-Chiari syndrome attributed to chronic deep venous thrombosis with alcoholic liver cirrhosis. Journal of Gastroenterology, 1999, 34, 634-639.	5.1	0

#	Article	IF	CITATIONS
181	A human liver cell-based system modeling a clinical prognostic liver signature combined with single cell RNA-seq for discovery of novel liver disease therapeutics. Journal of Hepatology, 2020, 73, S28-S29.	3.7	0
182	The Hypomorphic Gata1low Mutation Induces Fibrosis in Multiple Organs. Blood, 2018, 132, 3059-3059.	1.4	0
183	Current Status of the Use of Statins and Aspirin in the Chemoprevention of Hepatocellular Carcinoma. Gastroenterology and Hepatology, 2020, 16, 319-321.	0.1	0
184	Liver cancer risk-predictive molecular biomarkers specific to clinico-epidemiological contexts. Advances in Cancer Research, 2022, , .	5.0	0