Jose Crossa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2121633/publications.pdf

Version: 2024-02-01

454 papers

27,651 citations

4388 86 h-index 135 g-index

474 all docs

docs citations

474

474 times ranked

11790 citing authors

#	Article	IF	CITATIONS
1	Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Science, 2017, 22, 961-975.	8.8	1,004
2	Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers. Genetics, 2010, 186, 713-724.	2.9	664
3	Genomic Selection in Wheat Breeding using Genotypingâ€byâ€Sequencing. Plant Genome, 2012, 5, .	2.8	556
4	Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree. Genetics, 2009, 182, 375-385.	2.9	514
5	Genomic Prediction of Breeding Values when Modeling Genotype $\tilde{A}-$ Environment Interaction using Pedigree and Dense Molecular Markers. Crop Science, 2012, 52, 707-719.	1.8	478
6	A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theoretical and Applied Genetics, 2014, 127, 595-607.	3.6	439
7	Association Analysis of Historical Bread Wheat Germplasm Using Additive Genetic Covariance of Relatives and Population Structure. Genetics, 2007, 177, 1889-1913.	2.9	426
8	Statistical Analyses of Multilocation Trials. Advances in Agronomy, 1990, , 55-85.	5.2	373
9	Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity, 2014, 112, 48-60.	2.6	357
10	Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. G3: Genes, Genomes, Genetics, 2016, 6, 2799-2808.	1.8	336
11	Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genetical Research, 2010, 92, 295-308.	0.9	319
12	Additive Main Effects and Multiplicative Interaction Analysis of Two International Maize Cultivar Trials. Crop Science, 1990, 30, 493-500.	1.8	297
13	Breeding schemes for the implementation of genomic selection in wheat (Triticum spp .). Plant Science, 2016, 242, 23-36.	3.6	292
14	Highâ€throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding Converge ^F . Journal of Integrative Plant Biology, 2012, 54, 312-320.	8.5	287
15	Increased Prediction Accuracy in Wheat Breeding Trials Using a Marker × Environment Interaction Genomic Selection Model. G3: Genes, Genomes, Genetics, 2015, 5, 569-582.	1.8	266
16	Genetic Gains in Grain Yield Through Genomic Selection in Eight Biâ€parental Maize Populations under Drought Stress. Crop Science, 2015, 55, 154-163.	1.8	253
17	Identification of Drought, Heat, and Combined Drought and Heat Tolerant Donors in Maize. Crop Science, 2013, 53, 1335-1346.	1.8	247
18	Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments. G3: Genes, Genomes, Genetics, 2012, 2, 1427-1436.	1.8	242

#	Article	IF	CITATIONS
19	Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing. G3: Genes, Genomes, Genetics, 2013, 3, 1903-1926.	1.8	235
20	Biplot Analysis of Genotype $\tilde{A}-$ Environment Interaction: Proceed with Caution. Crop Science, 2009, 49, 1564-1576.	1.8	232
21	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	21.4	219
22	Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics, 2019, 51, 1530-1539.	21.4	216
23	Two Types of GGE Biplots for Analyzing Multiâ€Environment Trial Data. Crop Science, 2001, 41, 656-663.	1.8	208
24	Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat. G3: Genes, Genomes, Genetics, 2012, 2, 1595-1605.	1.8	187
25	Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity, 2015, 114, 291-299.	2.6	187
26	Genomicâ€Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R. Plant Genome, 2010, 3, 106-116.	2.8	183
27	Genome-enabled prediction of genetic values using radial basis function neural networks. Theoretical and Applied Genetics, 2012, 125, 759-771.	3.6	180
28	Genetic Yield Gains and Changes in Associated Traits of CIMMYT Spring Bread Wheat in a "Historic―Set Representing 30 Years of Breeding. Crop Science, 2012, 52, 1123-1131.	1.8	171
29	Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 2011, 179, 175-186.	1.2	170
30	Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 2006, 149, 289-301.	1.2	166
31	Evaluation of Genomic Selection Training Population Designs and Genotyping Strategies in Plant Breeding Programs Using Simulation. Crop Science, 2014, 54, 1476-1488.	1.8	164
32	META-R: A software to analyze data from multi-environment plant breeding trials. Crop Journal, 2020, 8, 745-756.	5.2	164
33	Genomic Prediction of Gene Bank Wheat Landraces. G3: Genes, Genomes, Genetics, 2016, 6, 1819-1834.	1.8	159
34	AMMI adjustment for statistical analysis of an international wheat yield trial. Theoretical and Applied Genetics, 1991, 81, 27-37.	3.6	156
35	Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 2008, 55, 1095-1140.	1.6	155
36	Phylogenetic and Multivariate Analyses To Determine the Effects of Different Tillage and Residue Management Practices on Soil Bacterial Communities. Applied and Environmental Microbiology, 2010, 76, 3685-3691.	3.1	153

#	Article	IF	Citations
37	Sites Regression and Shifted Multiplicative Model Clustering of Cultivar Trial Sites under Heterogeneity of Error Variances. Crop Science, 1997, 37, 406-415.	1.8	146
38	Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations. Frontiers in Plant Science, 2017, 8, 1916.	3.6	145
39	Genetic Characterization of CIMMYT Inbred Maize Lines and Open Pollinated Populations Using Large Scale Fingerprinting Methods. Crop Science, 2002, 42, 1832-1840.	1.8	141
40	Core Hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics, 2009, 10, 243.	2.6	138
41	Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Research, 2013, 151, 19-26.	5.1	138
42	Multitrait, Random Regression, or Simple Repeatability Model in High‶hroughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield. Plant Genome, 2017, 10, plantgenome2016.11.0111.	2.8	138
43	Agronomic Effects from Chromosome Translocations 7DL.7Ag and 1BL.1RS in Spring Wheat. Crop Science, 1998, 38, 27-33.	1.8	136
44	A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea maysÂL.). Euphytica, 2008, 161, 241-257.	1.2	134
45	High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica, 2007, 157, 365-384.	1.2	132
46	The Modern Plant Breeding Triangle: Optimizing the Use of Genomics, Phenomics, and Environics Data. Frontiers in Plant Science, 2021 , 12 , 651480 .	3.6	132
47	Genomic Selection and Prediction in Plant Breeding. Journal of Crop Improvement, 2011, 25, 239-261.	1.7	131
48	Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nature Communications, 2020, 11, 4572.	12.8	129
49	Genome-Enabled Prediction Models for Yield Related Traits in Chickpea. Frontiers in Plant Science, 2016, 7, 1666.	3.6	127
50	Bayesian Genomic Prediction with Genotype $<$ b> \tilde{A} — $<$ /b> Environment Interaction Kernel Models. G3: Genes, Genomes, Genetics, 2017, 7, 41-53.	1.8	126
51	Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Research, 2012, 137, 261-267.	5.1	124
52	Long-term consequences of tillage, residue management, and crop rotation on maize/wheat root rot and nematode populations in subtropical highlands. Applied Soil Ecology, 2006, 32, 305-315.	4.3	122
53	A review of deep learning applications for genomic selection. BMC Genomics, 2021, 22, 19.	2.8	122
54	Using Partial Least Squares Regression, Factorial Regression, and AMMI Models for Interpreting Genotype × Environment Interaction. Crop Science, 1999, 39, 955-967.	1.8	120

#	Article	IF	CITATIONS
55	Genomic Prediction of Genotype \tilde{A} — Environment Interaction Kernel Regression Models. Plant Genome, 2016, 9, plantgenome 2016.03.0024.	2.8	118
56	Factors Affecting the Accuracy of Genotype Imputation in Populations from Several Maize Breeding Programs. Crop Science, 2012, 52, 654-663.	1.8	117
57	Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Applied Soil Ecology, 2008, 38, 197-210.	4.3	116
58	Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping. Theoretical and Applied Genetics, 2013, 126, 1237-1256.	3.6	116
59	Classifying Genetic Resources by Categorical and Continuous Variables. Crop Science, 1998, 38, 1688-1696.	1.8	115
60	Multi-environment Genomic Prediction of Plant Traits Using Deep Learners With Dense Architecture. G3: Genes, Genomes, Genetics, 2018, 8, 3813-3828.	1.8	115
61	Mapping QTLs and QTLÂ×Âenvironment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theoretical and Applied Genetics, 2006, 112, 1009-1023.	3.6	114
62	Modeling Genotype $\tilde{A}-$ Environment Interaction Using Additive Genetic Covariances of Relatives for Predicting Breeding Values of Wheat Genotypes. Crop Science, 2006, 46, 1722-1733.	1.8	113
63	A Genomic Bayesian Multi-trait and Multi-environment Model. G3: Genes, Genomes, Genetics, 2016, 6, 2725-2744.	1.8	113
64	Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Scientific Reports, 2018, 8, 12527.	3.3	113
65	Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar †Stephens†in multi-environment trials. Theoretical and Applied Genetics, 2012, 124, 1-11.	3.6	109
66	Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Research, 2016, 186, 157-165.	5.1	108
67	Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits. G3: Genes, Genomes, Genetics, 2018, 8, 3829-3840.	1.8	108
68	Combining superior agronomic performance and terminal heat tolerance with resistance to spot blotch (Bipolaris sorokiniana) of wheat in the warm humid Gangetic Plains of South Asia. Field Crops Research, 2007, 103, 53-61.	5.1	107
69	Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data. Plant Methods, 2017, 13, 4.	4.3	107
70	Increasing Genomicâ€Enabled Prediction Accuracy by Modeling Genotype × Environment Interactions in Kansas Wheat. Plant Genome, 2017, 10, plantgenome2016.12.0130.	2.8	107
71	QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theoretical and Applied Genetics, 2013, 126, 583-600.	3.6	106
72	A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627.	27.8	106

#	Article	IF	Citations
73	A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theoretical and Applied Genetics, 2001, 103, 944-952.	3.6	105
74	Genotype×environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Research, 2010, 116, 268-277.	5.1	104
75	Using the shifted multiplicative model to search for "separability―in crop cultivar trials. Theoretical and Applied Genetics, 1992, 84, 161-172.	3.6	102
76	Phenotyping transgenic wheat for drought resistance. Journal of Experimental Botany, 2012, 63, 1799-1808.	4.8	102
77	Extending the Marker × Environment Interaction Model for Genomicâ€Enabled Prediction and Genomeâ€Wide Association Analysis in Durum Wheat. Crop Science, 2016, 56, 2193-2209.	1.8	101
78	Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theoretical and Applied Genetics, 2018, 131, 1405-1422.	3.6	101
79	The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crops Research, 2013, 154, 12-22.	5.1	100
80	Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits. Food Chemistry, 2017, 237, 499-505.	8.2	100
81	QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genetical Research, 2006, 88, 93-104.	0.9	99
82	Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theoretical and Applied Genetics, 2017, 130, 1415-1430.	3.6	99
83	An assessment of wheat yield sensitivity and breeding gains in hot environments. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122190.	2.6	97
84	Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat. G3: Genes, Genomes, Genetics, 2019, 9, 1231-1247.	1.8	96
85	A Benchmarking Between Deep Learning, Support Vector Machine and Bayesian Threshold Best Linear Unbiased Prediction for Predicting Ordinal Traits in Plant Breeding. G3: Genes, Genomes, Genetics, 2019, 9, 601-618.	1.8	95
86	Genomic Prediction of Genetic Values for Resistance to Wheat Rusts. Plant Genome, 2012, 5, .	2.8	94
87	Gains in Maize Genetic Improvement in Eastern and Southern Africa: I. CIMMYT Hybrid Breeding Pipeline. Crop Science, 2017, 57, 168-179.	1.8	94
88	Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance. Plant Genome, 2018, 11, 170104.	2.8	94
89	Genomic prediction for grain zinc and iron concentrations in spring wheat. Theoretical and Applied Genetics, 2016, 129, 1595-1605.	3.6	93
90	Genetic Diversity in CIMMYT Nontemperate Maize Germplasm: Landraces, Open Pollinated Varieties, and Inbred Lines. Crop Science, 2008, 48, 617-624.	1.8	93

#	Article	IF	Citations
91	A Sampling Strategy for Conserving Genetic Diversity when Forming Core Subsets. Crop Science, 2005, 45, 1035-1044.	1.8	92
92	Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Research, 2011, 124, 37-45.	5.1	92
93	META: A Suite of SAS Programs to Analyze Multienvironment Breeding Trials. Agronomy Journal, 2013, 105, 11-19.	1.8	92
94	Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction. G3: Genes, Genomes, Genetics, 2017, 7, 1995-2014.	1.8	92
95	Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population. G3: Genes, Genomes, Genetics, 2017, 7, 2315-2326.	1.8	92
96	Relationships among Bread Wheat International Yield Testing Locations in Dry Areas. Crop Science, 2001, 41, 1461-1469.	1.8	89
97	Genetic Yield Gains In CIMMYT's International Elite Spring Wheat Yield Trials By Modeling The Genotype × Environment Interaction. Crop Science, 2017, 57, 789-801.	1.8	89
98	Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials. Heredity, 2021, 126, 92-106.	2.6	89
99	Interpreting genotypeâ€Ã—â€environment interaction in tropical maize using linked molecular markers and environmental covariables. Theoretical and Applied Genetics, 1999, 99, 611-625.	3.6	88
100	Using Factor Analytic Models for Joining Environments and Genotypes without Crossover Genotype \tilde{A} —Environment Interaction. Crop Science, 2008, 48, 1291-1305.	1.8	86
101	Prediction Assessment of Linear Mixed Models for Multienvironment Trials. Crop Science, 2011, 51, 944-954.	1.8	84
102	Interpreting Genotype ✕ Environment Interaction in Wheat by Partial Least Squares Regression. Crop Science, 1998, 38, 679-689.	1.8	83
103	Biplots of Linearâ€Bilinear Models for Studying Crossover Genotype × Environment Interaction. Crop Science, 2002, 42, 619-633.	1.8	83
104	Dimensions of Diversity in Modern Spring Bread Wheat in Developing Countries from 1965. Crop Science, 2002, 42, 1766-1779.	1.8	82
105	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	6.7	82
106	Grouping of accessions of Mexican races of maize revisited with SSR markers. Theoretical and Applied Genetics, 2006, 113, 177-185.	3.6	81
107	New Deep Learning Genomic-Based Prediction Model for Multiple Traits with Binary, Ordinal, and Continuous Phenotypes. G3: Genes, Genomes, Genetics, 2019, 9, 1545-1556.	1.8	81
108	Sampling Strategies for Conserving Maize Diversity When Forming Core Subsets Using Genetic Markers. Crop Science, 2006, 46, 854-864.	1.8	80

#	Article	IF	CITATIONS
109	Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied & Translational Genomics, 2016, 11, 3-8.	2.1	79
110	Statistical genetic considerations for maintaining germ plasm collections. Theoretical and Applied Genetics, 1993, 86, 673-678.	3.6	78
111	Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theoretical and Applied Genetics, 2019, 132, 177-194.	3.6	78
112	From Genotype $\tilde{A}-$ Environment Interaction to Gene $\tilde{A}-$ Environment Interaction. Current Genomics, 2012, 13, 225-244.	1.6	78
113	Studying crossover genotype $\tilde{A}-$ environment interaction using linear-bilinear models and mixed models. Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9, 362-380.	1.4	77
114	Associations of Environments in South Asia Based on Spot Blotch Disease of Wheat Caused by Cochliobolus sativus. Crop Science, 2007, 47, 1071-1081.	1.8	77
115	Deep Kernel and Deep Learning for Genome-Based Prediction of Single Traits in Multienvironment Breeding Trials. Frontiers in Genetics, 2019, 10, 1168.	2.3	77
116	Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theoretical and Applied Genetics, 1996, 92, 163-169.	3.6	76
117	Selection for Resistance to Southwestern Corn Borer Using Markerâ€Assisted and Conventional Backcrossing. Crop Science, 2002, 42, 1516-1528.	1.8	75
118	Statistical methods for classifying genotypes. Euphytica, 2004, 137, 19-37.	1.2	75
119	Genetic Gains for Grain Yield in CIMMYT Spring Bread Wheat across International Environments. Crop Science, 2012, 52, 1522-1533.	1.8	75
120	Unlocking the genetic diversity of Creole wheats. Scientific Reports, 2016, 6, 23092.	3.3	75
121	Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphytica, 2003, 134, 305-317.	1.2	73
122	Use of Genomic Estimated Breeding Values Results in Rapid Genetic Gains for Drought Tolerance in Maize. Plant Genome, 2017, 10, plantgenome2016.07.0070.	2.8	72
123	Plant traits related to yield of wheat in early, late, or continuous drought conditions. Euphytica, 1998, 100, 109-121.	1.2	71
124	Prediction Assessment of Shrinkage Estimators of Multiplicative Models for Multiâ€Environment Cultivar Trials. Crop Science, 1999, 39, 998-1009.	1.8	71
125	Associations among Twenty Years of International Bread Wheat Yield Evaluation Environments. Crop Science, 2003, 43, 1698-1711.	1.8	70
126	Improving Maize Grain Yield under Drought Stress and Nonâ€stress Environments in Subâ€Saharan Africa using Markerâ€Assisted Recurrent Selection. Crop Science, 2016, 56, 344-353.	1.8	70

#	Article	IF	Citations
127	High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theoretical and Applied Genetics, 2019, 132, 1705-1720.	3.6	70
128	Genetic Gains for Grain Yield in CIMMYT's Semiâ€Arid Wheat Yield Trials Grown in Suboptimal Environments. Crop Science, 2018, 58, 1890-1898.	1.8	69
129	Genomic Prediction Enhanced Sparse Testing for Multi-environment Trials. G3: Genes, Genomes, Genetics, 2020, 10, 2725-2739.	1.8	68
130	Global Adaptation of Spring Bread and Durum Wheat Lines Nearâ€lsogenic for Major Reduced Height Genes. Crop Science, 2006, 46, 603-613.	1.8	67
131	Association Mapping Reveals Novel Stem Rust Resistance Loci in Durum Wheat at the Seedling Stage. Plant Genome, 2014, 7, plantgenome2013.08.0026.	2.8	67
132	Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Molecular Breeding, 2014, 34, 701-715.	2.1	66
133	Singleâ€Step Genomic and Pedigree Genotype × Environment Interaction Models for Predicting Wheat Lines in International Environments. Plant Genome, 2017, 10, plantgenome2016.09.0089.	2.8	66
134	Use of Hyperspectral Image Data Outperforms Vegetation Indices in Prediction of Maize Yield. Crop Science, 2017, 57, 2517-2524.	1.8	66
135	Prospects and Challenges of Applied Genomic Selection—A New Paradigm in Breeding for Grain Yield in Bread Wheat. Plant Genome, 2018, 11, 180017.	2.8	65
136	Differential Adaptation of CIMMYT Bread Wheat to Global High Temperature Environments. Crop Science, 2005, 45, 2443-2453.	1.8	64
137	Analysis of Genetic Factors Influencing the Developmental Rate of Globally Important CIMMYT Wheat Cultivars. Crop Science, 2005, 45, 2113-2119.	1.8	63
138	Effect of Leaf Rust on Grain Yield and Yield Traits of Durum Wheats with Race-Specific and Slow-Rusting Resistance to Leaf Rust. Plant Disease, 2006, 90, 1065-1072.	1.4	63
139	Gains in Maize Genetic Improvement in Eastern and Southern Africa: II. CIMMYT Openâ€Pollinated Variety Breeding Pipeline. Crop Science, 2017, 57, 180-191.	1.8	63
140	Classification of Peruvian highland maize races using plant traits. Genetic Resources and Crop Evolution, 2008, 55, 151-162.	1.6	62
141	Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Scientific Reports, 2016, 6, 27312.	3.3	62
142	Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. Journal of Cereal Science, 2017, 75, 1-9.	3.7	62
143	Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Research, 2018, 215, 104-112.	5.1	62
144	Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Scientific Reports, 2018, 8, 11701.	3.3	61

#	Article	IF	CITATIONS
145	Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials. G3: Genes, Genomes, Genetics, 2019, 9, 2913-2924.	1.8	61
146	Methodologies for estimating the sample size required for genetic conservation of outbreeding crops. Theoretical and Applied Genetics, 1989, 77, 153-161.	3.6	60
147	Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genetic Resources and Crop Evolution, 1999, 46, 37-45.	1.6	60
148	Genomeâ€Wide Association Study for Adaptation to Agronomic Plant Density: A Component of High Yield Potential in Spring Wheat. Crop Science, 2015, 55, 2609-2619.	1.8	60
149	A Pedigreeâ€Based Reaction Norm Model for Prediction of Cotton Yield in Multienvironment Trials. Crop Science, 2015, 55, 1143-1151.	1.8	58
150	Hybrid Wheat Prediction Using Genomic, Pedigree, and Environmental Covariables Interaction Models. Plant Genome, 2019, 12, 180051.	2.8	58
151	Performance of Yield and Stability of Advanced Wheat Genotypes under Heat Stress Environments of the Indoâ€Gangetic Plains. Crop Science, 2007, 47, 1561-1573.	1.8	57
152	The effect of tillage, crop rotation and residue management on maize and wheat growth and development evaluated with an optical sensor. Field Crops Research, 2011, 120, 58-67.	5.1	57
153	Gene action of canopy temperature in bread wheat under diverse environments. Theoretical and Applied Genetics, 2010, 120, 1107-1117.	3.6	56
154	Genomic Prediction with Pedigree and Genotype $\tilde{A}-$ Environment Interaction in Spring Wheat Grown in South and West Asia, North Africa, and Mexico. G3: Genes, Genomes, Genetics, 2017, 7, 481-495.	1.8	56
155	Modeling Additive $\tilde{A}-$ Environment and Additive $\tilde{A}-$ Additive $\tilde{A}-$ Environment Using Genetic Covariances of Relatives of Wheat Genotypes. Crop Science, 2007, 47, 311-320.	1.8	55
156	Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
157	Identifying QTLs and Epistasis in Structured Plant Populations Using Adaptive Mixed LASSO. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16, 170-184.	1.4	55
158	Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations. Heredity, 2012, 109, 313-319.	2.6	55
159	Empirical Comparison of Tropical Maize Hybrids Selected Through Genomic and Phenotypic Selections. Frontiers in Plant Science, 2019, 10, 1502.	3.6	54
160	Classifying vegetable genetic resources—A case study with domesticated Capsicum spp Scientia Horticulturae, 2010, 126, 186-191.	3.6	53
161	Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theoretical and Applied Genetics, 2019, 132, 2381-2399.	3.6	53
162	<i>EnvRtype</i> : a software to interplay enviromics and quantitative genomics in agriculture. G3: Genes, Genomes, Genetics, 2021, 11 , .	1.8	53

#	Article	IF	Citations
163	Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crops Research, 2001, 70, 167-176.	5.1	52
164	Genomic-enabled prediction with classification algorithms. Heredity, 2014, 112, 616-626.	2.6	52
165	Physiological factors associated with genotype by environment interaction in wheat. Field Crops Research, 2002, 75, 139-160.	5.1	51
166	Genome-enabled prediction using probabilistic neural network classifiers. BMC Genomics, 2016, 17, 208.	2.8	51
167	Title is missing!. Euphytica, 1997, 95, 01-09.	1.2	50
168	Evaluation of early to medium maturing open pollinated maize varieties in SADC region using GGE biplot based on the SREG model. Field Crops Research, 2007, 103, 161-169.	5.1	50
169	A data-driven simulation platform to predict cultivars' performances under uncertain weather conditions. Nature Communications, 2020, 11, 4876.	12.8	50
170	Heterosis and Combining Ability of CIMMYT's Quality Protein Maize Germplasm: II. Subtropical. Crop Science, 1993, 33, 51-57.	1.8	49
171	Heterosis and Combining Ability of CIMMYT's Quality Protein Maize Germplasm: I. Lowland Tropical. Crop Science, 1993, 33, 46-51.	1.8	49
172	Analysis of Variety Yield Trials Using Two-Dimensional Separable ARIMA Processes. Biometrics, 1996, 52, 763.	1.4	48
173	Genome-Enabled Prediction Using the BLR (Bayesian Linear Regression) R-Package. Methods in Molecular Biology, 2013, 1019, 299-320.	0.9	48
174	Genetic improvement of grain quality traits for CIMMYT semi-dwarf spring bread wheat varieties developed during 1965–2015: 50 years of breeding. Field Crops Research, 2017, 210, 192-196.	5.1	48
175	Comparison of Models and Wholeâ€Genome Profiling Approaches for Genomicâ€Enabled Prediction of Septoria Tritici Blotch, Stagonospora Nodorum Blotch, and Tan Spot Resistance in Wheat. Plant Genome, 2017, 10, plantgenome2016.08.0082.	2.8	48
176	Interpreting Treatment $\tilde{A}-$ Environment Interaction in Agronomy Trials. Agronomy Journal, 2001, 93, 949-960.	1.8	47
177	Variability in glutenin subunit composition of Mediterranean durum wheat germplasm and its relationship with gluten strength. Journal of Agricultural Science, 2014, 152, 379-393.	1.3	47
178	Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding. G3: Genes, Genomes, Genetics, 2015, 5, 291-300.	1.8	47
179	BGGE: A New Package for Genomic-Enabled Prediction Incorporating Genotype × Environment Interaction Models. G3: Genes, Genomes, Genetics, 2018, 8, 3039-3047.	1.8	47
180	Multi-Trait, Multi-Environment Genomic Prediction of Durum Wheat With Genomic Best Linear Unbiased Predictor and Deep Learning Methods. Frontiers in Plant Science, 2019, 10, 1311.	3.6	47

#	Article	IF	CITATIONS
181	Introgression of an Exotic Germplasm for Improving an Adapted Maize Population 1. Crop Science, 1987, 27, 187-190.	1.8	46
182	Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Theoretical and Applied Genetics, 2017, 130, 1431-1440.	3.6	46
183	Heterosis and Combining Ability of CIMMYT's Subtropical and Temperate Earlyâ€Maturity Maize Germplasm. Crop Science, 1992, 32, 884-890.	1.8	45
184	A Twoâ€Stage, Threeâ€Way Method for Classifying Genetic Resources in multiple Environments. Crop Science, 1999, 39, 259-267.	1.8	45
185	Studying the effect of environmental variables on the genotypeÂ×Âenvironment interaction of tomato. Euphytica, 2006, 153, 119-134.	1.2	45
186	Genetic Gains in Yield and Yield Related Traits under Drought Stress and Favorable Environments in a Maize Population Improved Using Marker Assisted Recurrent Selection. Frontiers in Plant Science, 2017, 8, 808.	3.6	45
187	When less can be better: How can we make genomic selection more cost-effective and accurate in barley?. Theoretical and Applied Genetics, 2018, 131, 1873-1890.	3.6	45
188	CGIAR modeling approaches for resourceâ€constrained scenarios: I. Accelerating crop breeding for a changing climate. Crop Science, 2020, 60, 547-567.	1.8	45
189	Detecting (trans)gene flow to landraces in centers of crop origin: lessons from the case of maize in Mexico. Environmental Biosafety Research, 2005, 4, 197-208.	1.1	44
190	Wheat yield and tillage–straw management system×year interaction explained by climatic co-variables for an irrigated bed planting system in northwestern Mexico. Field Crops Research, 2011, 124, 347-356.	5.1	44
191	Long-term association of locations for testing spring bread wheat. Euphytica, 1993, 72, 95-106.	1.2	43
192	Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding 1. Journal of Animal Science, 2013, 91, 3522-3531.	0.5	43
193	A Multivariate Method for Classifying Cultivars and Studying Group × Environment × Trait Interaction. Crop Science, 2003, 43, 1249-1258.	1.8	42
194	A Genomic Selection Index Applied to Simulated and Real Data. G3: Genes, Genomes, Genetics, 2015, 5, 2155-2164.	1.8	42
195	Heterosis among populations of maize (Zea mays L.) with different levels of exotic germplasm. Theoretical and Applied Genetics, 1987, 73, 445-450.	3.6	41
196	I.4 Screening Experimental Designs for Quantitative Trait Loci, Association Mapping, Genotype-by Environment Interaction, and Other Investigations. Frontiers in Physiology, 2012, 3, 156.	2.8	41
197	Genetic structures of the CIMMYT international yield trial targeted to irrigated environments. Molecular Breeding, 2012, 29, 529-541.	2.1	41
198	Development and characterization of the 4th CSISA-spot blotch nursery of bread wheat. European Journal of Plant Pathology, 2015, 143, 595-605.	1.7	41

#	Article	IF	Citations
199	Genetic characterization of 218 elite CIMMYT maize inbred lines using RFLP markers. Euphytica, 2005, 142, 97-106.	1.2	40
200	Daylength, Temperature and Solar Radiation Effects on the Phenology and Yield Formation of Spring Durum Wheat. Journal of Agronomy and Crop Science, 2016, 202, 203-216.	3.5	40
201	Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model. Crop Science, 2011, 51, 1458-1469.	1.8	39
202	An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction. G3: Genes, Genomes, Genetics, 2019, 9, 1355-1369.	1.8	39
203	On-farm performance and farmers' participatory assessment of new stress-tolerant maize hybrids in Eastern Africa. Field Crops Research, 2020, 246, 107693.	5.1	39
204	Biplots of Linear-Bilinear Models for Studying Crossover Genotype × Environment Interaction. Crop Science, 2002, 42, 619.	1.8	39
205	Measurements of Representativeness Used in Genetic Resources Conservation and Plant Breeding. Crop Science, 2003, 43, 1912-1921.	1.8	38
206	Historical changes in grain yield and quality of spring wheat varieties cultivated in Siberia from 1900 to 2010. Canadian Journal of Plant Science, 2013, 93, 425-433.	0.9	38
207	Selection of the Bandwidth Parameter in a Bayesian Kernel Regression Model for Genomic-Enabled Prediction. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20, 512-532.	1.4	38
208	Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data. Plant Methods, 2017, 13, 62.	4.3	38
209	Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica, 2007, 155, 361-369.	1.2	37
210	Increased ranking change in wheat breeding under climate change. Nature Plants, 2021, 7, 1207-1212.	9.3	37
211	The Modified Location Model for Classifying Genetic Resources. Crop Science, 2002, 42, 1719-1726.	1.8	36
212	Numerical classification of related Peruvian highland maize races using internal ear traits. Genetic Resources and Crop Evolution, 2008, 55, 1055-1064.	1.6	36
213	Use of rapid tests to predict quality traits of CIMMYT bread wheat genotypes grown under different environments. LWT - Food Science and Technology, 2016, 69, 327-333.	5.2	36
214	Role of Modelling in International Crop Research: Overview and Some Case Studies. Agronomy, 2018, 8, 291.	3.0	36
215	Linear Selection Indices in Modern Plant Breeding. , 2018, , .		36
216	Phenomic selection and prediction of maize grain yield from nearâ€infrared reflectance spectroscopy ofÂkernels. The Plant Phenome Journal, 2020, 3, e20002.	2.0	36

#	Article	IF	CITATIONS
217	Maximizing efficiency of genomic selection in CIMMYT's tropical maize breeding program. Theoretical and Applied Genetics, 2021, 134, 279-294.	3.6	36
218	Title is missing!. Euphytica, 1997, 95, 11-20.	1.2	35
219	Multi-Trait and Multi-Environment QTL Analyses for Resistance to Wheat Diseases. PLoS ONE, 2012, 7, e38008.	2.5	35
220	Effects of S ₁ Recurrent Selection for Provitamin A Carotenoid Content for Three Openâ€Pollinated Maize Cultivars. Crop Science, 2014, 54, 2449-2460.	1.8	35
221	Association mapping for resistance to tan spot induced by Pyrenophora tritici-repentis race 1 in CIMMYTs historical bread wheat set. Euphytica, 2016, 207, 515-525.	1.2	35
222	A shifted multiplicative model cluster analysis for grouping environments without genotypic rank change. Theoretical and Applied Genetics, 1993, 85, 577-586.	3.6	34
223	Grain yield genetic gains and changes in physiological related traits for CIMMYT's High Rainfall Wheat Screening Nursery tested across international environments. Field Crops Research, 2020, 249, 107742.	5.1	34
224	Drought and Heat Stress Impacts on Phenolic Acids Accumulation in Durum Wheat Cultivars. Foods, 2021, 10, 2142.	4.3	34
225	Combining Results from Augmented Designs over Sites. Agronomy Journal, 2001, 93, 389-395.	1.8	34
226	Practical considerations for maintaining germplasm in maize. Theoretical and Applied Genetics, 1994, 89, 89-95.	3.6	33
227	Evaluation of Carribean Maize Accessions to Develop a Core Subset. Crop Science, 1998, 38, 1378-1386.	1.8	33
228	Durum wheat (Triticum durum Desf.) Mediterranean landraces as sources of variability for allelic combinations at Glu-1/Glu-3 loci affecting gluten strength and pasta cooking quality. Genetic Resources and Crop Evolution, 2014, 61, 1219-1236.	1.6	33
229	Strategies for Effective Use of Genomic Information in Crop Breeding Programs Serving Africa and South Asia. Frontiers in Plant Science, 2020, 11, 353.	3.6	33
230	Heterotic Patterns among Mexican Races of Maize. Crop Science, 1990, 30, 1182-1190.	1.8	32
231	Classifying Mexican Maize Accessions Using Hierarchical and Density Search Methods. Crop Science, 1997, 37, 972-980.	1.8	32
232	Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica, 2001, 119, 241-244.	1.2	32
233	Minimum resources for phenotyping morphological traits of maize (Zea mays L.) genetic resources. Plant Genetic Resources: Characterisation and Utilisation, 2008, 6, 195-200.	0.8	32
234	Genetic Gains in Grain Yield of a Maize Population Improved through Marker Assisted Recurrent Selection under Stress and Non-stress Conditions in West Africa. Frontiers in Plant Science, 2017, 8, 841.	3.6	32

#	Article	IF	CITATIONS
235	Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials. G3: Genes, Genomes, Genetics, 2018, 8, 1347-1365.	1.8	32
236	Regularized selection indices for breeding value prediction using hyper-spectral image data. Scientific Reports, 2020, 10, 8195.	3.3	32
237	Global adaptation patterns of Australian and CIMMYT spring bread wheat. Theoretical and Applied Genetics, 2007, 115, 819-835.	3.6	31
238	Genomicâ€enabled Prediction Accuracies Increased by Modeling Genotype × Environment Interaction in Durum Wheat. Plant Genome, 2018, 11, 170112.	2.8	31
239	Aerial highâ€throughput phenotyping enables indirect selection for grain yield at the early generation, seedâ€limited stages in breeding programs. Crop Science, 2020, 60, 3096-3114.	1.8	31
240	Genomic Prediction of Kernel Zinc Concentration in Multiple Maize Populations Using Genotyping-by-Sequencing and Repeat Amplification Sequencing Markers. Frontiers in Plant Science, 2020, 11, 534.	3.6	30
241	Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop Journal, 2021, 9, 325-341.	5.2	30
242	Genome-based trait prediction in multi- environment breeding trials in groundnut. Theoretical and Applied Genetics, 2020, 133, 3101-3117.	3.6	29
243	The area under the function: an index for selecting desirable genotypes. Theoretical and Applied Genetics, 1993, 87, 409-415.	3.6	28
244	Agronomic Variability in Selected <i>Triticum turgidum</i> x <i<t. i="" tauschii<=""> Synthetic Hexaploid Wheats. Journal of Agronomy and Crop Science, 1994, 173, 307-317.</i<t.>	3.5	28
245	Relationships among International Testing Sites of Spring Durum Wheat. Crop Science, 1996, 36, 33-40.	1.8	28
246	A Selection Index Method Based on Eigenanalysis. Crop Science, 2006, 46, 1711-1721.	1.8	28
247	Provitamin A Carotenoids in Grain Reduce Aflatoxin Contamination of Maize While Combating Vitamin A Deficiency. Frontiers in Plant Science, 2019, 10, 30.	3.6	28
248	Identification of CIMMYT spring bread wheat germplasm maintaining superior grain yield and quality under heat-stress. Journal of Cereal Science, 2020, 93, 102981.	3.7	28
249	Harnessing translational research in wheat for climate resilience. Journal of Experimental Botany, 2021, 72, 5134-5157.	4.8	28
250	Variance Effective Population Size under Mixed Self and Random Mating with Applications to Genetic Conservation of Species. Crop Science, 1999, 39, 1282-1294.	1.8	27
251	Relationships between physiological traits, grain number and yield potential in a wheat DH population of large spike phenotype. Field Crops Research, 2014, 164, 126-135.	5.1	27
252	Evaluation of Grain Yield and Quality Traits of Bread Wheat Genotypes Cultivated in Northwest Turkey. Crop Science, 2016, 56, 73-84.	1.8	27

#	Article	IF	CITATIONS
253	A Bayesian Approach for Assessing the Stability of Genotypes. Crop Science, 2006, 46, 2654-2665.	1.8	26
254	Genetic Analysis of Slowâ€Rusting Resistance to Leaf Rust in Durum Wheat. Crop Science, 2008, 48, 2132-2140.	1.8	26
255	Genomic Bayesian Prediction Model for Count Data with Genotype $\tilde{A}-$ Environment Interaction. G3: Genes, Genomes, Genetics, 2016, 6, 1165-1177.	1.8	26
256	Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing. Theoretical and Applied Genetics, 2020, 133, 2869-2879.	3.6	26
257	Target Population of Environments for Wheat Breeding in India: Definition, Prediction and Genetic Gains. Frontiers in Plant Science, 2021, 12, 638520.	3.6	26
258	Genomic Prediction in a Large African Maize Population. Crop Science, 2017, 57, 2361-2371.	1.8	25
259	Genomeâ€based prediction of multiple wheat quality traits in multiple years. Plant Genome, 2020, 13, e20034.	2.8	25
260	Overfitting, Model Tuning, and Evaluation of Prediction Performance., 2022, , 109-139.		25
261	Statistical Tests and Estimators of Multiplicative Models for Genotype-by-Environment Interaction. , 1996, , 199-234.		24
262	A Molecular Selection Index Method Based on Eigenanalysis. Genetics, 2008, 180, 547-557.	2.9	24
263	A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 2012, 17, 15-37.	1.4	24
264	Predicting wheat maturity and stay–green parameters by modeling spectral reflectance measurements and their contribution to grain yield under rainfed conditions. Field Crops Research, 2016, 196, 191-198.	5.1	24
265	Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. Euphytica, 2016, 209, 689-692.	1.2	24
266	Molecular Marker-Based Selection Tools in Spring Bread Wheat Improvement: CIMMYT Experience and Prospects. Sustainable Development and Biodiversity, 2016, , 421-474.	1.7	24
267	A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data. G3: Genes, Genomes, Genetics, 2020, 10, 4177-4190.	1.8	24
268	Combining genotype, environment and attribute variables in regression models for predicting the cell-means of multi-environment cultivar trials. Theoretical and Applied Genetics, 1998, 96, 803-811.	3.6	23
269	Linear, bilinear, and linear-bilinear fixed and mixed models for analyzing genotype × environment interaction in plant breeding and agronomy. Canadian Journal of Plant Science, 2010, 90, 561-574.	0.9	23
270	Evaluation and Interpretation of Interactions. Agronomy Journal, 2015, 107, 736-747.	1.8	23

#	Article	IF	CITATIONS
271	Evaluating Testing Strategies for Plant Breeding Field Trials: Redesigning a CIMMYT International Wheat Nursery. Crop Science, 2015, 55, 164-177.	1.8	23
272	Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems. G3: Genes, Genomes, Genetics, 2018, 8, 131-147.	1.8	23
273	Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression. G3: Genes, Genomes, Genetics, 2015, 5, 2113-2126.	1.8	22
274	A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data. G3: Genes, Genomes, Genetics, 2019, 9, 3381-3393.	1.8	22
275	A comparison of results obtained with two methods for assessing yield stability. Theoretical and Applied Genetics, 1988, 75, 460-467.	3.6	21
276	Threeâ€Mode Analyses of Maize Using Morphological and Agronomic Attributes Measured in Multilocational Trials. Crop Science, 1995, 35, 1483-1491.	1.8	21
277	Resistance to barley scald (Rhynchosporium secalis) in the Ethiopian donor lines â€~Steudelli' and â€~Jet', analyzed by partial least squares regression and interval mapping. Hereditas, 2004, 141, 166-179.	1.4	21
278	Lessons learnt from forty years of international spring bread wheat trials. Euphytica, 2007, 157, 385-390.	1.2	21
279	Analysis and Interpretation of Interactions in Agricultural Research. Agronomy Journal, 2015, 107, 748-762.	1.8	21
280	Genomic Prediction with Genotype by Environment Interaction Analysis for Kernel Zinc Concentration in Tropical Maize Germplasm. G3: Genes, Genomes, Genetics, 2020, 10, 2629-2639.	1.8	21
281	Fundamentals of Artificial Neural Networks and Deep Learning. , 2022, , 379-425.		20
282	Heterosis and Combining Ability of CIMMYT's Tropical $\tilde{A}-$ Subtropical Maize Germplasm. Crop Science, 1992, 32, 1483-1489.	1.8	19
283	Implications of the variance effective population size on the genetic conservation of monoecious species. Theoretical and Applied Genetics, 1994, 89-89, 936-942.	3.6	19
284	Results and Biological Interpretation of Shifted Multiplicative Model Clustering of Durum Wheat Cultivars and Test Site. Crop Science, 1997, 37, 88-97.	1.8	19
285	Using Line $\tilde{A}-$ Tester Interaction for the Formation of Yellow Maize Synthetics Tolerant to Acid Soils. Crop Science, 2003, 43, 1718-1728.	1.8	19
286	Pedigree-Based Prediction Models with Genotype $\tilde{A}-$ Environment Interaction in Multienvironment Trials of CIMMYT Wheat. Crop Science, 2017, 57, 1865-1880.	1.8	19
287	Maize responsiveness to Azospirillum brasilense: Insights into genetic control, heterosis and genomic prediction. PLoS ONE, 2019, 14, e0217571.	2.5	19
288	On the approximation of interaction effect models by Hadamard powers of the additive genomic relationship. Theoretical Population Biology, 2020, 132, 16-23.	1.1	19

#	Article	IF	CITATIONS
289	Genetic dissection of Striga hermonthica (Del.) Benth. resistance via genome-wide association and genomic prediction in tropical maize germplasm. Theoretical and Applied Genetics, 2021, 134, 941-958.	3 . 6	19
290	Comparing a Preliminary Racial Classification with a Numerical Classification of the Maize Landraces of Uruguay. Crop Science, 2003, 43, 718.	1.8	19
291	Genome-Based Genotype $\tilde{A}-$ Environment Prediction Enhances Potato (Solanum tuberosum L.) Improvement Using Pseudo-Diploid and Polysomic Tetraploid Modeling. Frontiers in Plant Science, 2022, 13, 785196.	3.6	19
292	Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines. Field Crops Research, 2022, 284, 108585.	5.1	19
293	PAPER PRESENTED AT INTERNATIONAL WORKSHOP ON INCREASING WHEAT YIELD POTENTIAL, CIMMYT, OBREGON, MEXICO, 20–24 MARCH 2006 Structural equation modelling for studying genotype×environment interactions of physiological traits affecting yield in wheat. Journal of Agricultural Science, 2007, 145, 151.	1.3	18
294	Genomic Prediction Models for Count Data. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20, 533-554.	1.4	18
295	Genomic Prediction using Phenotypes from Pedigreed Lines with No Marker Data. Crop Science, 2016, 56, 957-964.	1.8	18
296	Performance and grain yield stability of maize populations developed using marker-assisted recurrent selection and pedigree selection procedures. Euphytica, 2016, 208, 285-297.	1.2	18
297	Modeling copy number variation in the genomic prediction of maize hybrids. Theoretical and Applied Genetics, 2019, 132, 273-288.	3.6	18
298	Application of Genomic Selection at the Early Stage of Breeding Pipeline in Tropical Maize. Frontiers in Plant Science, 2021, 12, 685488.	3 . 6	18
299	Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theoretical and Applied Genetics, 1996, 92, 163-169.	3.6	18
300	Enviromic Assembly Increases Accuracy and Reduces Costs of the Genomic Prediction for Yield Plasticity in Maize. Frontiers in Plant Science, 2021, 12, 717552.	3.6	18
301	A restricted selection index method based on eigenanalysis. Journal of Agricultural, Biological, and Environmental Statistics, 2008, 13, 440-457.	1.4	17
302	Megaâ€Environment Identification for Barley Based on Twentyâ€Seven Years of Global Grain Yield Data. Crop Science, 2009, 49, 1705-1718.	1.8	17
303	High-Throughput and Precision Phenotyping for Cereal Breeding Programs. , 2013, , 341-374.		17
304	A Bayesian Poisson-lognormal Model for Count Data for Multiple-Trait Multiple-Environment Genomic-Enabled Prediction. G3: Genes, Genomes, Genetics, 2017, 7, 1595-1606.	1.8	17
305	Multivariate Bayesian Analysis of Onâ€Farm Trials with Multipleâ€Trait and Multipleâ€Environment Data. Agronomy Journal, 2019, 111, 2658-2669.	1.8	17
306	Stacking Tolerance to Drought and Resistance to a Parasitic Weed in Tropical Hybrid Maize for Enhancing Resilience to Stress Combinations. Frontiers in Plant Science, 2020, 11, 166.	3 . 6	17

#	Article	IF	CITATIONS
307	Rapid delivery systems for future food security. Nature Biotechnology, 2021, 39, 1179-1181.	17.5	17
308	Wheat grain yield and stability assessed through regional trials in the Eastern Gangetic Plains of South Asia. Euphytica, 2007, 157, 457-464.	1.2	16
309	A Predetermined Proportional Gains Eigen Selection Index Method. Crop Science, 2016, 56, 2436-2447.	1.8	16
310	A Hierarchical Bayesian Estimation Model for Multienvironment Plant Breeding Trials in Successive Years. Crop Science, 2016, 56, 2260-2276.	1.8	16
311	Genomic Selection for Increased Yield in Syntheticâ€Derived Wheat. Crop Science, 2017, 57, 713-725.	1.8	16
312	A Shifted Multiplicative Model Fusion Method for Grouping Environments without Cultivar Rank Change. Crop Science, 1995, 35, 54-62.	1.8	16
313	The global adaptation of bread wheat at high latitudes. Euphytica, 2006, 152, 303-316.	1.2	15
314	Variation in partial resistance to barley leaf rust (Puccinia hordei) and agronomic characters of Ethiopian landrace lines. Euphytica, 2007, 158, 139-151.	1.2	15
315	Indirect selection using reference and probe genotype performance in multi-environment trials. Crop and Pasture Science, 2011, 62, 313.	1.5	15
316	Stability Analysis of Yield and Grain Quality Traits for the Nixtamalization Process of Maize Genotypes Cultivated in the Central High Valleys of Mexico. Crop Science, 2016, 56, 3090-3099.	1.8	15
317	Approximate Genome-Based Kernel Models for Large Data Sets Including Main Effects and Interactions. Frontiers in Genetics, 2020, 11, 567757.	2.3	15
318	Scalable Sparse Testing Genomic Selection Strategy for Early Yield Testing Stage. Frontiers in Plant Science, 2021, 12, 658978.	3.6	15
319	Genomeâ€enabled prediction for sparse testing in multiâ€environmental wheat trials. Plant Genome, 2021, 14, e20151.	2.8	15
320	Selection of stable varieties by minimizing the probability of disaster. Field Crops Research, 1991, 27, 169-181.	5.1	14
321	Breeding of an early-flowering and drought-tolerant Lotus corniculatus L. variety for the high-rainfall zone of southern Australia. Crop and Pasture Science, 2012, 63, 848.	1.5	14
322	Genomeâ€based prediction of Bayesian linear and nonâ€linear regression models for ordinal data. Plant Genome, 2020, 13, e20021.	2.8	14
323	A guide for kernel generalized regression methods for genomic-enabled prediction. Heredity, 2021, 126, 577-596.	2.6	14
324	Optimizing Genomic-Enabled Prediction in Small-Scale Maize Hybrid Breeding Programs: A Roadmap Review. Frontiers in Plant Science, 2021, 12, 658267.	3.6	14

#	Article	lF	CITATIONS
325	A Sequential Clustering Strategy for Classifying Gene Bank Accessions. Crop Science, 1997, 37, 1656-1662.	1.8	13
326	Genotype $\tilde{A}-$ Environment Interacion in multi-environment Trials using shrinkage factors for ammi models. Euphytica, 2004, 137, 119-127.	1.2	13
327	Analysis of a three-way interaction including multi-attributes. Australian Journal of Agricultural Research, 2006, 57, 1185.	1.5	13
328	Probability models for detecting transgenic plants. Seed Science Research, 2008, 18, 77-89.	1.7	13
329	Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments. G3: Genes, Genomes, Genetics, 2019, 9, 2925-2934.	1.8	13
330	Multi-trait genomic-enabled prediction enhances accuracy in multi-year wheat breeding trials. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	13
331	Linear-bilinear models for the analysis of genotype-environment interaction , 2002, , 305-322.		13
332	Genomic Predictions for Common Bunt, FHB, Stripe Rust, Leaf Rust, and Leaf Spotting Resistance in Spring Wheat. Genes, 2022, 13, 565.	2.4	13
333	Genome and EnvironmentÂBased Prediction Models and Methods of Complex Traits Incorporating Genotype × Environment Interaction. Methods in Molecular Biology, 2022, 2467, 245-283.	0.9	13
334	Regeneration potential of CIMMYT durum wheat and triticale varieties from immature embryos. Plant Breeding, 2001, 120, 291-295.	1.9	12
335	SASHAYDIALL: A SAS Program for Hayman's Diallel Analysis. Crop Science, 2018, 58, 1605-1615.	1.8	12
336	Factor analysis to investigate genotype and genotype × environment interaction effects on pro-vitamin A content and yield in maize synthetics. Euphytica, 2019, 215, 1.	1.2	12
337	The impact of sample selection strategies on genetic diversity and representativeness in germplasm bank collections. BMC Plant Biology, 2019, 19, 520.	3.6	12
338	Assessing combining abilities, genomic data, and genotypeÂ× environment interactions to predict hybrid grain sorghum performance. Plant Genome, 2021, 14, e20127.	2.8	12
339	Partial Least Squares Enhances Genomic Prediction of New Environments. Frontiers in Genetics, 0, 13, .	2.3	12
340	Effect of S3 Recurrent Selection in Four Tropical Maize Populations on Their Selfed and Randomly Mated Generations. Crop Science, 1995, 35, 697-702.	1.8	11
341	Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. Plant Methods, 2018, 14, 46.	4.3	11
342	Effect of F1 and F2 generations on genetic variability and working steps of doubled haploid production in maize. PLoS ONE, 2019, 14, e0224631.	2.5	11

#	Article	IF	CITATIONS
343	Comparison of arrayâ€and sequencingâ€based markers for genomeâ€wide association mapping and genomic prediction in spring wheat. Crop Science, 2020, 60, 211-225.	1.8	11
344	Additive Main Effects and Multiplicative Interaction Model. Crop Science, 2003, 43, 1976-1982.	1.8	10
345	Hierarchical Multipleâ€Factor Analysis for Classifying Genotypes Based on Phenotypic and Genetic Data. Crop Science, 2010, 50, 105-117.	1.8	10
346	Sample size for detecting and estimating the proportion of transgenic plants with narrow confidence intervals. Seed Science Research, 2010, 20, 123-136.	1.7	10
347	Variance Effective Population Size for Dioecious Species. Crop Science, 2012, 52, 79-90.	1.8	10
348	Sample Size under Inverse Negative Binomial Group Testing for Accuracy in Parameter Estimation. PLoS ONE, 2012, 7, e32250.	2.5	10
349	Grain Yield and Stability of White Early Maize Hybrids in the Highland Valleys of Mexico. Crop Science, 2017, 57, 3002-3015.	1.8	10
350	Effect of Missing Values on Variance Component Estimates in Multienvironment Trials. Crop Science, 2019, 59, 508-517.	1.8	10
351	Genome-Wide Association Mapping and Genomic Prediction of Anther Extrusion in CIMMYT Hybrid Wheat Breeding Program via Modeling Pedigree, Genomic Relationship, and Interaction With the Environment. Frontiers in Genetics, 2020, 11, 586687.	2.3	10
352	Changes in the bacterial community structure in soil under conventional and conservation practices throughout a complete maize (Zea mays L.) crop cycle. Applied Soil Ecology, 2021, 157, 103733.	4.3	10
353	lme4GS: An R-Package for Genomic Selection. Frontiers in Genetics, 2021, 12, 680569.	2.3	10
354	Deepâ€learning power and perspectives for genomic selection. Plant Genome, 2021, 14, e20122.	2.8	10
355	TESTS AND ESTIMATORS OF MULTIPLICATIVE MODELS FOR VARIETY TRIALS. Conference on Applied Statistics in Agriculture, 0, , .	0.0	10
356	Genome-based prediction of agronomic traits in spring wheat under conventional and organic management systems. Theoretical and Applied Genetics, 2021, 135, 537.	3.6	10
357	Response to Early Generation Genomic Selection for Yield in Wheat. Frontiers in Plant Science, 2021, 12, 718611.	3.6	10
358	Sparse testing using genomic prediction improves selection for breeding targets in elite spring wheat. Theoretical and Applied Genetics, 2022, 135, 1939-1950.	3.6	10
359	The Yield Stability of Maize Genotypes across International Environments: Full Season Tropical Maize. Experimental Agriculture, 1988, 24, 253-263.	0.9	9
360	Variance Effective Population Size for Twoâ€Stage Sampling of Monoecious Species. Crop Science, 1997, 37, 14-26.	1.8	9

#	Article	IF	CITATIONS
361	Durum wheat selection under zero tillage increases early vigor and is neutral to yield. Field Crops Research, 2020, 248, 107675.	5.1	9
362	Application of a Poisson deep neural network model for the prediction of count data in genomeâ€based prediction. Plant Genome, 2021, 14, e20118.	2.8	9
363	A zero altered Poisson random forest model for genomic-enabled prediction. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	9
364	The statistical theory of linear selection indices from phenotypic to genomic selection. Crop Science, 0, , .	1.8	9
365	Identifying Subsets of Maize Accessions by Threeâ€Mode Principal Component Analysis. Crop Science, 1997, 37, 1936-1943.	1.8	8
366	The Modified Location Model for Classifying Genetic Resources. Crop Science, 2002, 42, 1727-1736.	1.8	8
367	Targeting of early to intermediate maize hybrids for yield performanceand yield stability using SREG model. South African Journal of Plant and Soil, 2010, 27, 207-214.	1.1	8
368	Optimal sample size for estimating the proportion of transgenic plants using the Dorfman model with a random confidence interval. Seed Science Research, 2011, 21, 235-245.	1.7	8
369	Comparative performance of top-cross maize hybrids under managed drought stress and variable rainfed environments. Euphytica, 2016, 212, 455-472.	1.2	8
370	A Variational Bayes Genomic-Enabled Prediction Model with Genotype $\tilde{A}-$ Environment Interaction. G3: Genes, Genomes, Genetics, 2017, 7, 1833-1853.	1.8	8
371	A singular value decomposition Bayesian multiple-trait and multiple-environment genomic model. Heredity, 2019, 122, 381-401.	2.6	8
372	Efficiency of a Constrained Linear Genomic Selection Index To Predict the Net Genetic Merit in Plants. G3: Genes, Genomes, Genetics, 2019, 9, 3981-3994.	1.8	8
373	Prediction of count phenotypes using high-resolution images and genomic data. G3: Genes, Genomes, Genetics, 2021, 11, jkab035.	1.8	8
374	Building the Embrapa rice breeding dataset for efficient data reuse. Crop Science, 2021, 61, 3445-3457.	1.8	8
375	MODELACIÓN DE LA INTERACCIÓN GENOTIPO X AMBIENTE EN RENDIMIENTO DE HÃBRIDOS DE MAÃZ BLANCO EN AMBIENTES MÚLTIPLES. Revista Fitotecnia Mexicana, 2015, 38, 337.	0.1	8
376	Strategic use of Iranian bread wheat landrace accessions for genetic improvement: Core set formulation and validation. Plant Breeding, 2021, 140, 87-99.	1.9	8
377	Bayesian multitrait kernel methods improve multienvironment genome-based prediction. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	8
378	Juvenile Heat Tolerance in Wheat for Attaining Higher Grain Yield by Shifting to Early Sowing in October in South Asia. Genes, 2021, 12, 1808.	2.4	8

#	Article	IF	CITATIONS
379	The yield stability of CIMMYT'S maize germplasm. Euphytica, 1989, 40, 245-251.	1.2	7
380	Predicted and realized grain yield responses to full-sib family selection in CIMMYT maize (Zea mays L.) populations. Theoretical and Applied Genetics, 1989, 77, 33-38.	3.6	7
381	Applications of Genomic Selection in Breeding Wheat for Rust Resistance. Methods in Molecular Biology, 2017, 1659, 173-182.	0.9	7
382	Modeling Genotype × Environment Interaction Using a Factor Analytic Model of Onâ€Farm Wheat Trials in the Yaqui Valley of Mexico. Agronomy Journal, 2019, 111, 2647-2657.	1.8	7
383	Expectation and variance of the estimator of the maximized selection response of linear selection indices with normal distribution. Theoretical and Applied Genetics, 2020, 133, 2743-2758.	3.6	7
384	Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize. Crop Journal, 2022, 10, 109-116.	5.2	7
385	Multi-Trait Multi-Environment QTL Modelling for Drought-Stress Adaptation in Maize., 0,, 25-36.		7
386	Analysing yield stability of maize genotypes using a spatial model. Theoretical and Applied Genetics, 1988, 75, 863-868.	3.6	6
387	Statistical Genetics and Simulation Models in Genetic Resource Conservation and Regeneration. Crop Science, 2004, 44, 2246-2253.	1.8	6
388	Designing for and Analyzing Results from Field Experiments. Journal of Crop Improvement, 2005, 14, 29-50.	1.7	6
389	Bayesian Genomic-Enabled Prediction as an Inverse Problem. G3: Genes, Genomes, Genetics, 2014, 4, 1991-2001.	1.8	6
390	A Bayesian Genomic Regression Model with Skew Normal Random Errors. G3: Genes, Genomes, Genetics, 2018, 8, 1771-1785.	1.8	6
391	An R Package for Multitrait and Multienvironment Data with the Itemâ€Based Collaborative Filtering Algorithm. Plant Genome, 2018, 11, 180013.	2.8	6
392	The Relative Efficiency of Two Multistage Linear Phenotypic Selection Indices to Predict the Net Genetic Merit. Crop Science, 2019, 59, 1037-1051.	1.8	6
393	On Hadamard and Kronecker products in covariance structures for genotype $\tilde{A}-$ environment interaction. Plant Genome, 2020, 13, e20033.	2.8	6
394	Analysis and Interpretation of Interactions of Fixed and Random Effects. Assa, Cssa and Sssa, O, , 177-199.	0.6	6
395	A Bayesian Multiple-Trait and Multiple-Environment Model Using the Matrix Normal Distribution. , 0, , .		6
396	A New Deep Learning Calibration Method Enhances Genome-Based Prediction of Continuous Crop Traits. Frontiers in Genetics, 2021, 12, 798840.	2.3	6

#	Article	IF	CITATIONS
397	A Program for Estimating the Optimum Sample Size for Germplasm Conservation. Journal of Heredity, 1993, 84, 85-86.	2.4	5
398	Additive Main Effects and Multiplicative Interaction Model. Crop Science, 2003, 43, 1967-1975.	1.8	5
399	Using linear-bilinear models for studying gene expression $\tilde{A}-$ treatment interaction in microarray experiments. Journal of Agricultural, Biological, and Environmental Statistics, 2005, 10, 337-353.	1.4	5
400	Statistical Sampling Properties of the Coefficients of Three Phenotypic Selection Indices. Crop Science, 2016, 56, 51-58.	1.8	5
401	Opportunities and Challenges of Predictive Approaches for Harnessing the Potential of Genetic Resources. Frontiers in Plant Science, 2021, 12, 674036.	3.6	5
402	Rindsel: An R Package for Phenotypic and Molecular Selection Indices Used in Plant Breeding. Methods in Molecular Biology, 2014, 1145, 87-96.	0.9	5
403	Bayesian regularized quantile regression: A robust alternative for genome-based prediction of skewed data. Crop Journal, 2020, 8, 713-722.	5. 2	5
404	Spatial Analysis of cDNA Microarray Experiments. Crop Science, 2005, 45, 748-757.	1.8	4
405	Generalizing the Sites Regression Model to Threeâ€Way Interaction Including Multiâ€Attributes. Crop Science, 2009, 49, 2043-2057.	1.8	4
406	Sample size for detecting transgenic plants using inverse binomial group testing with dilution effect. Seed Science Research, 2013, 23, 279-288.	1.7	4
407	Bayesian Genomic-Enabled Prediction Models for Ordinal and Count Data. , 2017, , 55-97.		4
408	A Bayesian Decision Theory Approach for Genomic Selection. G3: Genes, Genomes, Genetics, 2018, 8, 3019-3037.	1.8	4
409	Optimum and Decorrelated Constrained Multistage Linear Phenotypic Selection Indices Theory. Crop Science, 2019, 59, 2585-2600.	1.8	4
410	Maximum <i>a posteriori</i> Threshold Genomic Prediction Model for Ordinal Traits. G3: Genes, Genomes, Genetics, 2020, 10, 4083-4102.	1.8	4
411	Combined Multistage Linear Genomic Selection Indices To Predict the Net Genetic Merit in Plant Breeding. G3: Genes, Genomes, Genetics, 2020, 10, 2087-2101.	1.8	4
412	Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices. Heredity, 2021, 127, 423-432.	2.6	4
413	Comparing Fusarium graminearum Infection Period in Wheat and Barley. Cereal Research Communications, 1997, 25, 739-740.	1.6	4
414	A Comparison of the Adoption of Genomic Selection Across Different Breeding Institutions. Frontiers in Plant Science, 2021, 12, 728567.	3.6	4

#	Article	IF	CITATIONS
415	Using an incomplete block design to allocate lines to environments improves sparse genomeâ€based prediction in plant breeding. Plant Genome, 2022, 15, e20194.	2.8	4
416	Comparing gradient boosting machine and Bayesian threshold BLUP for genomeâ€based prediction of categorical traits in wheat breeding. Plant Genome, 2022, 15, e20214.	2.8	4
417	Comparison of single-trait and multi-trait genomic predictions on agronomic and disease resistance traits in spring wheat. Theoretical and Applied Genetics, 2022, 135, 2747-2767.	3.6	4
418	Gene action and the bottleneck effect in relation to sample size for maintenance of cross-pollinated populations. Field Crops Research, 1992, 29, 225-239.	5.1	3
419	Improvement in selfed and random-mated generations of four subtropical maize populations through S3 recurrent selection. Euphytica, 1995, 83, 1-8.	1.2	3
420	Three-Mode Principal Component Analysis of Genotype-by-Environment-by-Trait Data in Durum Wheat. Journal of Crop Improvement, 2011, 25, 619-649.	1.7	3
421	Augmented Designs-Experimental Designs in Which All Treatments are not Replicated. Assa, Cssa and Sssa, 0, , 345-369.	0.6	3
422	Distribution, phylogeny, and pathogenicity of Xanthomonas albilineans causing sugarcane leaf scald in Mexico. Crop Protection, 2021, 150, 105799.	2.1	3
423	The Linear Phenotypic Selection Index Theory. , 2018, , 15-42.		3
424	Plant breeding increases spring wheat yield potential in Afghanistan. Crop Science, 2022, 62, 167-177.	1.8	3
425	Bayesian and Classical Prediction Models for Categorical and Count Data. , 2022, , 209-249.		3
426	Overview of Genomic Prediction Methods and the Associated Assumptions on the Variance of Marker Effect, and on the Architecture of the Target Trait. Methods in Molecular Biology, 2022, 2467, 139-156.	0.9	3
427	A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction. Frontiers in Genetics, $0,13,.$	2.3	3
428	Combining ability and heterosis under pest epidemics in a broad-based global wheat-breeding population. Plant Breeding, 2008, 127, 222-227.	1.9	2
429	Recent Developments in Multiplicative Models for Cultivar Trials. , 2015, , 571-577.		2
430	Application of multi-trait Bayesian decision theory for parental genomic selection. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	2
431	Female reproductive organs of Brassica napus are more sensitive than male to transient heat stress. Euphytica, 2021, 217, 1.	1.2	2
432	IBFIELDBOOK, AN INTEGRATED BREEDING FIELD BOOK FOR PLANT BREEDING. Revista Fitotecnia Mexicana, 2013, 36, 201.	0.1	2

#	Article	IF	CITATIONS
433	Reproducing Kernel Hilbert Spaces Regression and Classification Methods. , 2022, , 251-336.		2
434	Automated Machine Learning: A Case Study of Genomic "lmage-Based―Prediction in Maize Hybrids. Frontiers in Plant Science, 2022, 13, 845524.	3.6	2
435	Incorporating Omics Data in Genomic Prediction. Methods in Molecular Biology, 2022, 2467, 341-357.	0.9	2
436	Experimental Design for Plant Improvement. , 2022, , 215-235.		2
437	Using the Shifted Multiplicative Model Cluster Methods for Crossover Genotype -by- Environment Interaction. , 1996, , 175-198.		1
438	Optimal sample sizes for group testing in two-stage sampling. Seed Science Research, 2015, 25, 12-28.	1.7	1
439	A regression model for pooled data in a two-stage survey under informative sampling with application for detecting and estimating the presence of transgenic corn. Seed Science Research, 2016, 26, 182-197.	1.7	1
440	Inverse sampling regression for pooled data. Statistical Methods in Medical Research, 2017, 26, 1093-1109.	1.5	1
441	isqg: A Binary Framework for in Silico Quantitative Genetics. G3: Genes, Genomes, Genetics, 2019, 9, 2425-2428.	1.8	1
442	A robust Bayesian genome-based median regression model. Theoretical and Applied Genetics, 2019, 132, 1587-1606.	3.6	1
443	Additive genetic variance and covariance between relatives in synthetic wheat crosses with variable parental ploidy levels. Genetics, 2021, 217, .	2.9	1
444	Dry sowing reduced durum wheat performance under irrigated conservation agriculture. Field Crops Research, 2021, 274, 108310.	5.1	1
445	Linear Genomic Selection Indices. , 2018, , 99-120.		1
446	Linear Phenotypic Eigen Selection Index Methods. , 2018, , 149-176.		1
447	Estudio comparativo de técnicas de optimización multirespuesta en diseños experimentales. IngenierÃa Investigación Y TecnologÃa, 2020, 21, 1-12.	0.1	1
448	Artificial Neural Networks and Deep Learning for Genomic Prediction of Binary, Ordinal, and Mixed Outcomes., 2022,, 477-532.		1
449	Accounting for Correlation Between Traits in Genomic Prediction. Methods in Molecular Biology, 2022, 2467, 285-327.	0.9	1
450	Near-Infrared Spectroscopy to Predict Provitamin A Carotenoids Content in Maize. Agronomy, 2022, 12, 1027.	3.0	1

#	Article	IF	CITATIONS
451	Constrained Linear Phenotypic Selection Indices. , 2018, , 43-69.		O
452	ADAPTABILITY OF WHEAT GENOTYPES UNDER MIXED MODEL METHODOLOGY FOR NORTH EASTERN PLAINS ZONE OF THE COUNTRY. Journal of Experimental Biology and Agricultural Sciences, 2019, 7, 468-476.	0.4	0
453	Defining Target Wheat Breeding Environments. , 2022, , 31-45.		0
454	Theory and Practice of Phenotypic and Genomic Selection Indices. , 2022, , 593-616.		0