## Sunil Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2121532/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated<br>Microporous Polymer. ACS Catalysis, 2018, 8, 6751-6759.                                                                                                           | 11.2 | 106       |
| 2  | Study of nonlinear optical properties of organic dye by Z-scan technique using He–Ne laser. Journal of Materials Science: Materials in Electronics, 2014, 25, 1410-1415.                                                                                    | 2.2  | 62        |
| 3  | Heptazine based organic framework as a chemiresistive sensor for ammonia detection at room<br>temperature. Journal of Materials Chemistry A, 2018, 6, 18389-18395.                                                                                          | 10.3 | 61        |
| 4  | Phyto-fabrication of silver nanoparticles by Acacia nilotica leaves: Investigating their antineoplastic,<br>free radical scavenging potential and application in H2O2 sensing. Journal of the Taiwan Institute of<br>Chemical Engineers, 2019, 99, 239-249. | 5.3  | 57        |
| 5  | 2-Aminopyridine derivative as fluorescence â€~On–Off' molecular switch for selective detection of<br>Fe3+/Hg2+. Tetrahedron Letters, 2012, 53, 2302-2307.                                                                                                   | 1.4  | 56        |
| 6  | Study of energy transfer from capping agents to intrinsic vacancies/defects in passivated ZnS nanoparticles. Journal of Nanoparticle Research, 2010, 12, 2655-2666.                                                                                         | 1.9  | 54        |
| 7  | Using chemical bath deposition to create nanosheet-like CuO electrodes for supercapacitor applications. Colloids and Surfaces B: Biointerfaces, 2019, 181, 1004-1011.                                                                                       | 5.0  | 54        |
| 8  | A true oxygen-linked heptazine based polymer for efficient hydrogen evolution. Applied Catalysis B:<br>Environmental, 2019, 244, 313-319.                                                                                                                   | 20.2 | 54        |
| 9  | Supercapacitors based on Ti3C2Tx MXene extracted from supernatant and current collectors passivated by CVD-graphene. Scientific Reports, 2021, 11, 649.                                                                                                     | 3.3  | 54        |
| 10 | Engineering fused coumarin dyes: a molecular level understanding of aggregation quenching and<br>tuning electroluminescence via alkyl chain substitution. Journal of Materials Chemistry C, 2014, 2,<br>6637.                                               | 5.5  | 53        |
| 11 | Thickness-dependent efficiency of directly grown graphene based solar cells. Carbon, 2019, 148, 187-195.                                                                                                                                                    | 10.3 | 49        |
| 12 | Exploring an Emissive Charge Transfer Process in Zero-Twist Donor–Acceptor Molecular Design as a<br>Dual-State Emitter. Journal of Physical Chemistry C, 2016, 120, 12723-12733.                                                                            | 3.1  | 46        |
| 13 | Imine containing benzophenone scaffold as an efficient chemical device to detect selectively<br>Al <sup>3+</sup> . RSC Advances, 2013, 3, 345-351.                                                                                                          | 3.6  | 43        |
| 14 | Polymer-dispersed liquid-crystal-based switchable glazing fabricated <i>via</i> vacuum glass coupling. RSC Advances, 2020, 10, 32225-32231.                                                                                                                 | 3.6  | 41        |
| 15 | Application of Titanium-Carbide MXene-Based Transparent Conducting Electrodes in Flexible Smart<br>Windows. ACS Applied Materials & Interfaces, 2021, 13, 40976-40985.                                                                                      | 8.0  | 37        |
| 16 | Magnetic and structural characterization of transition metal co-doped CdS nanoparticles. Applied<br>Nanoscience (Switzerland), 2012, 2, 127-131.                                                                                                            | 3.1  | 36        |
| 17 | Acrylate-assisted fractal nanostructured polymer dispersed liquid crystal droplet based vibrant colored smart-windows. RSC Advances, 2019, 9, 12645-12655.                                                                                                  | 3.6  | 36        |
| 18 | Shallow chemical bath deposition of ZnS buffer layer for environmentally benign solar cell devices.<br>Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 025015.                                                                       | 1.5  | 35        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Role of deposition parameters on the properties of the fabricated heterojunction ZnS/p-Si Schottky<br>diode. Physica Scripta, 2022, 97, 045819.                                                                                                 | 2.5  | 34        |
| 20 | Trend breaking substitution pattern of phenothiazine with acceptors as a rational design platform for blue emitters. Journal of Materials Chemistry C, 2016, 4, 6769-6777.                                                                      | 5.5  | 33        |
| 21 | Effect of Cu-doping on the photoluminescence and photoconductivity of template synthesized CdS nanowires. Journal of Physics and Chemistry of Solids, 2019, 124, 1-6.                                                                           | 4.0  | 33        |
| 22 | Solvothermally synthesized europium-doped CdS nanorods: applications as phosphors. Journal of Nanoparticle Research, 2011, 13, 5465-5471.                                                                                                       | 1.9  | 32        |
| 23 | Compost Soil Microbial Fuel Cell to Generate Power using Urea as Fuel. Scientific Reports, 2020, 10, 4154.                                                                                                                                      | 3.3  | 32        |
| 24 | Emergence of <i>s</i> -heptazines: from trichloro- <i>s</i> -heptazine building blocks to functional materials. Journal of Materials Chemistry A, 2018, 6, 21719-21728.                                                                         | 10.3 | 30        |
| 25 | Hydrogen-bond mediated columnar liquid crystalline assemblies of <i>C</i> <sub>3</sub> -symmetric heptazine derivatives at ambient temperature. Soft Matter, 2018, 14, 6342-6352.                                                               | 2.7  | 30        |
| 26 | Effect of silica on the ZnS nanoparticles for stable and sustainable antibacterial application.<br>International Journal of Applied Ceramic Technology, 2019, 16, 531-540.                                                                      | 2.1  | 30        |
| 27 | Heptazine: an Electronâ€Đeficient Fluorescent Core for Discotic Liquid Crystals. Chemistry - A European<br>Journal, 2017, 23, 14718-14722.                                                                                                      | 3.3  | 29        |
| 28 | A Comparative Investigation of Optical and Structural Properties of Cu-Doped CdO-Derived Nanostructures. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1439-1446.                                                                 | 1.8  | 28        |
| 29 | Effect of zinc oxide concentration in fluorescent ZnS:Mn/ZnO core–shell nanostructures. Journal of Materials Science: Materials in Electronics, 2014, 25, 1716-1723.                                                                            | 2.2  | 27        |
| 30 | Structural, optical and magnetic investigations on Fe-doped ZnS nanoparticles. Journal of Materials<br>Science: Materials in Electronics, 2015, 26, 2754-2759.                                                                                  | 2.2  | 27        |
| 31 | Room Temperature Magnetism in Cobalt-Doped ZnS Nanoparticles. Journal of Superconductivity and<br>Novel Magnetism, 2015, 28, 137-142.                                                                                                           | 1.8  | 27        |
| 32 | Deepâ€Blue OLED Fabrication from Heptazine Columnar Liquid Crystal Based AlEâ€Active Skyâ€Blue Emitter.<br>ChemistrySelect, 2018, 3, 7771-7777.                                                                                                 | 1.5  | 27        |
| 33 | Effect of Ni-doping on optical and magnetic properties of solvothermally synthesized ZnS wurtzite nanorods. Journal of Materials Science: Materials in Electronics, 2014, 25, 785-790.                                                          | 2.2  | 26        |
| 34 | Effect of annealing treatment and deposition temperature on CdS thin films for CIGS solar cells applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 7890-7898.                                                      | 2.2  | 26        |
| 35 | Effect of Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> MXenes etched at elevated temperatures using concentrated acid on binder-free supercapacitors. RSC Advances, 2020, 10, 41837-41845.                                                     | 3.6  | 26        |
| 36 | Orthogonal biofunctionalization of magnetic nanoparticles via "clickable―poly(ethylene glycol)<br>silanes: a "universal ligand―strategy to design stealth and target-specific nanocarriers. Journal of<br>Materials Chemistry, 2012, 22, 24652. | 6.7  | 24        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Variation in chemical bath pH and the corresponding precursor concentration for optimizing the optical, structural and morphological properties of ZnO thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 17747-17758. | 2.2  | 24        |
| 38 | Structural and optical properties of silica capped ZnS:Mn quantum dots. Journal of Materials Science:<br>Materials in Electronics, 2015, 26, 3939-3946.                                                                                           | 2.2  | 23        |
| 39 | Solar cell based on vertical graphene nano hills directly grown on silicon. Carbon, 2020, 164, 235-243.                                                                                                                                           | 10.3 | 23        |
| 40 | Microemulsionâ€Mediated Synthesis and Characterization of<br><scp><scp>YBO</scp></scp> <sub>3</sub> : <scp><ce< scp=""></ce<></scp> <sup>3+</sup> Phosphors.<br>Journal of the American Ceramic Society, 2012, 95, 1814-1817.                     | 3.8  | 21        |
| 41 | Preferential intermolecular interactions lead to chiral recognition: enantioselective gel formation and collapse. Chemical Communications, 2018, 54, 11407-11410.                                                                                 | 4.1  | 21        |
| 42 | Effect of the Photoinitiator Concentration on the Electro-optical Properties of Thiol–Acrylate-Based PDLC Smart Windows. ACS Applied Energy Materials, 2022, 5, 6986-6995.                                                                        | 5.1  | 21        |
| 43 | Photoluminescence properties of Eu3+-doped Cd1â^'x Zn x S quantum dots. Journal of Nanoparticle<br>Research, 2009, 11, 1017-1021.                                                                                                                 | 1.9  | 20        |
| 44 | Effect of N-α Substitution on the Electropolymerization of N-Substituted Pyrroles:<br>Structure–Reactivity Relationship Studies. Journal of Physical Chemistry C, 2014, 118, 2570-2579.                                                           | 3.1  | 20        |
| 45 | Variation of dielectric strength of a insulation paper with thermal aging. NDT and E International, 2005, 38, 459-461.                                                                                                                            | 3.7  | 19        |
| 46 | Functionalization and characterization of ZnS quantum dots using biocompatible l-cysteine. Journal of Materials Science: Materials in Electronics, 2013, 24, 3875-3880.                                                                           | 2.2  | 19        |
| 47 | Effect of biocompatible glutathione capping on core–shell ZnS quantum dots. Journal of Materials<br>Science: Materials in Electronics, 2012, 23, 1387-1392.                                                                                       | 2.2  | 17        |
| 48 | Cysteamine-Based Cell-Permeable Zn <sup>2+</sup> -Specific Molecular Bioimaging Materials: From<br>Animal to Plant Cells. ACS Applied Materials & Interfaces, 2013, 5, 11730-11740.                                                               | 8.0  | 17        |
| 49 | Structural and optical characterization of hydroxy-propyl methyl cellulose-capped ZnO nanorods.<br>Journal of Materials Science, 2013, 48, 5536-5542.                                                                                             | 3.7  | 17        |
| 50 | CVD-graphene for low equivalent series resistance in rGO/CVD-graphene/Ni-based supercapacitors.<br>Nanotechnology, 2018, 29, 195404.                                                                                                              | 2.6  | 17        |
| 51 | Optical characterization of ZnO nanobelts. Journal of Materials Science: Materials in Electronics, 2006, 17, 281-285.                                                                                                                             | 2.2  | 16        |
| 52 | Synthesis and characterization of Ni-doped CdSe nanoparticles: magnetic studies in 300–100ÂK<br>temperature range. Applied Nanoscience (Switzerland), 2012, 2, 437-443.                                                                           | 3.1  | 16        |
| 53 | Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesized by reflux method. Journal of Materials Science: Materials in Electronics, 2014, 25, 1132-1137.                                                    | 2.2  | 16        |
| 54 | Microwave assisted synthesis of ZnO:Cu nano-phosphors and their photoluminescence behaviour.<br>Journal of Materials Science: Materials in Electronics, 2010, 21, 765-771.                                                                        | 2.2  | 14        |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Through Positional Isomerism: Impact of Molecular Composition on Enhanced Triplet Harvest for<br>Solution-Processed OLED Efficiency Improvement. ACS Applied Electronic Materials, 2021, 3, 2317-2332.                                                      | 4.3  | 14        |
| 56 | Effect of thermal annealing on pore density, pore size and pore homogeneity of polycarbonate NTFs.<br>Radiation Measurements, 2008, 43, 1357-1359.                                                                                                          | 1.4  | 13        |
| 57 | Structurally tuned benzo[h]chromene derivative as Pb2+ selective â€~turn-on' fluorescence sensor for<br>living cell imaging. Journal of Luminescence, 2013, 143, 355-360.                                                                                   | 3.1  | 13        |
| 58 | Multifunctional ammonium fuel cell using compost as a novel electro-catalyst. Journal of Power Sources, 2018, 402, 221-228.                                                                                                                                 | 7.8  | 13        |
| 59 | Effect of zinc oxide concentration on the core–shell ZnS/ZnO nanocomposites. Journal of Materials<br>Science: Materials in Electronics, 2013, 24, 5147-5154.                                                                                                | 2.2  | 12        |
| 60 | Atomic force microscope manipulation of multiwalled and single walled carbon nanotubes with reflux and ultrasonic treatments. Applied Nanoscience (Switzerland), 2014, 4, 19-26.                                                                            | 3.1  | 12        |
| 61 | Investigation of the Magnetic and Optical Properties of Wurtzite Fe-Doped ZnS Nanorods. Journal of<br>Electronic Materials, 2015, 44, 2829-2834.                                                                                                            | 2.2  | 12        |
| 62 | Dendritic Polynitrato Energetic Motifs: Development and Exploration of Physicochemical Behavior through Theoretical and Experimental Approach. ACS Omega, 2017, 2, 8227-8233.                                                                               | 3.5  | 12        |
| 63 | Correlation of antibacterial and time resolved photoluminescence studies using bio-reduced silver<br>nanoparticles conjugated with fluorescent quantum dots as a biomarker. Journal of Materials<br>Science: Materials in Electronics, 2019, 30, 6977-6983. | 2.2  | 12        |
| 64 | Studies on directly grown few layer graphene processed using tape-peeling method. Carbon, 2020, 158,<br>749-755.                                                                                                                                            | 10.3 | 12        |
| 65 | Room temperature magnetism in Ni-doped CdSe nanoparticles. Journal of Materials Science: Materials<br>in Electronics, 2011, 22, 901-904.                                                                                                                    | 2.2  | 11        |
| 66 | Femtosecond insights into direct electron injection in dye anchored ZnO QDs following charge transfer excitation. Physical Chemistry Chemical Physics, 2016, 18, 20672-20681.                                                                               | 2.8  | 11        |
| 67 | Optical properties of Silica capped Mn doped ZnS quantum dots. Physica Scripta, 2021, 96, 065802.                                                                                                                                                           | 2.5  | 11        |
| 68 | Effect of glutathione capping on the antibacterial activity of tin doped ZnO nanoparticles. Physica<br>Scripta, 2021, 96, 125807.                                                                                                                           | 2.5  | 11        |
| 69 | Morphology and time resolved photoluminescence of electrochemically synthesized zinc oxide nanowires. Journal of Materials Science: Materials in Electronics, 2010, 21, 1277-1280.                                                                          | 2.2  | 10        |
| 70 | Room temperature ferromagnetic behavior of Eu doped Cd1â^'x Zn x S nanoparticles. Journal of<br>Materials Science: Materials in Electronics, 2011, 22, 523-526.                                                                                             | 2.2  | 10        |
| 71 | Room temperature ferromagnetism in solvothermally synthesized pure CdSe and CdSe:Ni nanorods.<br>Journal of Materials Science: Materials in Electronics, 2011, 22, 1456-1459.                                                                               | 2.2  | 10        |
| 72 | Carboxylated â€~locking unit' directed ratiometric probe design, synthesis and application in selective<br>recognition of Fe3+/Cu2+. RSC Advances, 2013, 3, 6271.                                                                                           | 3.6  | 10        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mathematical models for the oxidative functionalization of multiwalled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 156-165.                               | 4.7 | 10        |
| 74 | Synthesis and characterisation of functional manganese doped ZnS quantum dots for bio-imaging application. Advances in Applied Ceramics, 2019, 118, 321-328.                                                 | 1.1 | 10        |
| 75 | Quantum dot-sensitized O-linked heptazine polymer photocatalyst for the metal-free visible light hydrogen generation. RSC Advances, 2020, 10, 29633-29641.                                                   | 3.6 | 10        |
| 76 | Optimum design for the ballistic diode based on graphene field-effect transistors. Npj 2D Materials and Applications, 2021, 5, .                                                                             | 7.9 | 10        |
| 77 | Effect of pyridine capping on morphological and optical properties of ZnS:Mn2+ core–shell quantum<br>dots. Journal of Materials Science: Materials in Electronics, 2016, 27, 3003-3010.                      | 2.2 | 9         |
| 78 | Whey peptide-encapsulated silver nanoparticles as a colorimetric and spectrophotometric probe for palladium(II). Mikrochimica Acta, 2019, 186, 763.                                                          | 5.0 | 9         |
| 79 | Three-dimensional atomic force microscopy for ultra-high-aspect-ratio imaging. Applied Surface Science, 2019, 469, 582-592.                                                                                  | 6.1 | 9         |
| 80 | A Tailored Heptazineâ€Based Porous Polymeric Network as a Versatile Heterogeneous (Photo)catalyst.<br>Chemistry - A European Journal, 2021, 27, 10649-10656.                                                 | 3.3 | 9         |
| 81 | Doping studies of Tb (terbium) and Cu (copper) on CdSe nanorods. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2011, 389, 1-5.                                                        | 4.7 | 8         |
| 82 | Glutathione-assisted synthesis of star-shaped zinc oxide nanostructures and their photoluminescence behavior. Journal of Luminescence, 2014, 149, 112-117.                                                   | 3.1 | 8         |
| 83 | Solvothermal growth of ultrathin nonporous nickel oxide nanosheets for ethanol sensing. Journal of Materials Science: Materials in Electronics, 2021, 32, 818-826.                                           | 2.2 | 8         |
| 84 | Room temperature investigations on optical and magnetic studies of CoxZn1â^'xS nanorods. Journal of<br>Magnetism and Magnetic Materials, 2015, 374, 548-552.                                                 | 2.3 | 7         |
| 85 | Role of Voluminous Substituents in Controlling the Optical Properties of Disc/Planar-Like Small<br>Organic Molecules: Toward Molecular Emission in Solid State. ACS Omega, 2017, 2, 5348-5356.               | 3.5 | 7         |
| 86 | Understanding the role of soft linkers in designing hepatzine-based polymeric frameworks as<br>heterogeneous (photo)catalyst. Journal of Colloid and Interface Science, 2021, 588, 138-146.                  | 9.4 | 7         |
| 87 | Thermal analysis and triboâ€performance evaluation of multilayered graphene and graphite based fly<br>ash filled banana fiber reinforced brake friction composites. Polymer Composites, 2022, 43, 6943-6954. | 4.6 | 7         |
| 88 | Photoluminescence characteristics of synthesized copper doped Cd1â^'x Zn x S quantum dots. Journal<br>of Materials Science: Materials in Electronics, 2009, 20, 1178-1181.                                   | 2.2 | 6         |
| 89 | A hybrid impedance control scheme for underwater welding robots with a passive foundation in the controller domain. Simulation, 2017, 93, 619-630.                                                           | 1.8 | 6         |
| 90 | Study of dispersion, absorption and permittivity of an synthetic insulation paper—with change in frequency and thermal aging. NDT and E International, 2006, 39, 19-21.                                      | 3.7 | 5         |

Sunil Kumar

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Optical studies of electrochemically synthesized CdS nanowires. Journal of Materials Science:<br>Materials in Electronics, 2011, 22, 335-338.                                                                        | 2.2 | 5         |
| 92  | Study of electroless template synthesized ZnSe nanowires and its characterization. Journal of<br>Materials Science: Materials in Electronics, 2014, 25, 957-961.                                                     | 2.2 | 5         |
| 93  | Annealing led conversion from polypyrrole to carbon nitride nanowires and the fabrication of highly efficient ammonia sensing device. Journal of Materials Science: Materials in Electronics, 2017, 28, 17791-17797. | 2.2 | 5         |
| 94  | Effect of Killer Impurities on Laser Excited Doped ZnS Phosphors. Journal of Optics (India), 2003, 32, 69-73.                                                                                                        | 1.7 | 4         |
| 95  | Laser based optical sensor for vibration measurements. NDT and E International, 2006, 39, 106-108.                                                                                                                   | 3.7 | 4         |
| 96  | Studies of hypro-mellose (HPMC) functionalized ZnS:Mn fluorescent quantum dots. Journal of<br>Materials Science: Materials in Electronics, 2017, 28, 1931-1937.                                                      | 2.2 | 4         |
| 97  | Cyclic codes with generalized cyclotomic cubic classes. Journal of Discrete Mathematical Sciences and Cryptography, 2019, 22, 923-933.                                                                               | 0.8 | 4         |
| 98  | Effect of temperature on excited state life-times of rare earth doped zinc oxide phosphors. Journal of<br>Physics and Chemistry of Solids, 2006, 67, 868-870.                                                        | 4.0 | 3         |
| 99  | Packing directed beneficial role of 3-D rigid alicyclic arms on the templated molecular aggregation problem. RSC Advances, 2015, 5, 61249-61257.                                                                     | 3.6 | 3         |
| 100 | Photoluminescent properties of SPAN-80 coated intrinsic and extrinsic ZnO nanostructures. Physica<br>E: Low-Dimensional Systems and Nanostructures, 2016, 79, 188-197.                                               | 2.7 | 3         |
| 101 | Effect of frequency and thermal aging on various parameters of a dielectric. NDT and E International, 2005, 38, 573-574.                                                                                             | 3.7 | 2         |
| 102 | Photoluminescence study of template-synthesized silver microstructures. Journal of Materials<br>Science, 2005, 40, 3833-3835.                                                                                        | 3.7 | 2         |
| 103 | Effects of La3+ doping on the optical characteristics and color tunability of (Mg, Mn)(Y, Ce, La)4Si3O13 phosphors. Journal of Luminescence, 2012, 132, 185-190.                                                     | 3.1 | 2         |
| 104 | Photo-physical studies of pyridine capped ZnO nanostructures. Russian Journal of Physical Chemistry<br>A, 2014, 88, 1166-1171.                                                                                       | 0.6 | 2         |
| 105 | Structural and optical behavior of hexa-propyl methyl cellulose (HPMC) capped ZnS core–shell<br>quantum dots. Journal of Materials Science: Materials in Electronics, 2015, 26, 5980-5986.                           | 2.2 | 2         |
| 106 | pH dependent studies of chemical bath deposition grown ZnO-SiO2 core-shell thin films. Journal of<br>the Korean Physical Society, 2017, 70, 98-103.                                                                  | 0.7 | 2         |
| 107 | Modified Atomic Orbital Overlap: Molecular Level Proof of the Nucleophilic Cleavage Propensity of Dinitrophenol-Based Probes. Journal of Organic Chemistry, 2017, 82, 4713-4720.                                     | 3.2 | 2         |
| 108 | Study of Size Dependent Photo-Induced Exciton Life-Time and Photocatalytic Activity of Nanocrystalline CdZnS. Advanced Science Letters, 2012, 16, 237-243.                                                           | 0.2 | 2         |

| #   | ARTICLE                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Through Structural Isomerism: Positional Effect of Alkyne Functionality on Molecular Optical<br>Properties. Physical Chemistry Chemical Physics, 2022, , .                                                                               | 2.8 | 2         |
| 110 | Rectifying Effect in a High-Performance Ballistic Diode Bridge Based on Encapsulated Graphene with a<br>Unique Design. ACS Applied Electronic Materials, 2022, 4, 1518-1524.                                                             | 4.3 | 2         |
| 111 | Optical Properties of ZnO Phosphors Activated with Mn and Se Impurity. Journal of Optics (India), 2006, 35, 45-50.                                                                                                                       | 1.7 | 1         |
| 112 | LASER-INDUCED PHOTOLUMINESCENT STUDIES OF Al-DOPED ZINC OXIDE NANOPARTICLES. International Journal of Nanoscience, 2010, 09, 439-445.                                                                                                    | 0.7 | 1         |
| 113 | An efficient novel low voltage field electron emitter with cathode consisting of template synthesized copper microarrays. Journal of Materials Science: Materials in Electronics, 2011, 22, 1725-1729.                                   | 2.2 | 1         |
| 114 | Effects of AlN buffer layers on the structural and the optical properties of GaN epilayers grown on<br>Al2O3 substrates by using plasma-assisted molecular beam epitaxy. Journal of the Korean Physical<br>Society, 2014, 64, 1128-1131. | 0.7 | 1         |
| 115 | Effect of ferromagnetic dopants on laser induced optical parameters of bismuth doped CaS<br>phosphors. Russian Journal of Physical Chemistry A, 2015, 89, 2482-2486.                                                                     | 0.6 | 1         |
| 116 | Electronic and optical properties of ZnOS/ZnO quantum-well structures with polarization effects.<br>Journal of the Korean Physical Society, 2016, 69, 370-372.                                                                           | 0.7 | 1         |
| 117 | Effect of killer impurities on laser-excited barium-doped ZnS phosphors at liquid nitrogen temperature. Radiation Effects and Defects in Solids, 2008, 163, 805-811.                                                                     | 1.2 | 0         |
| 118 | Effect of Visible Spectrum on the Optical Parameters of ZnSe Nanoparticles. AIP Conference Proceedings, 2011, , .                                                                                                                        | 0.4 | 0         |
| 119 | Phototoxicity free quantum dot-based niosome formulation for controlled drug release and its monitoring. Applied Nanoscience (Switzerland), 2018, 8, 617-625.                                                                            | 3.1 | 0         |
| 120 | Controlling the physical parameters of crystalline CIGS nanowires for use in superstrate configuration using vapor phase epitaxy. Applied Nanoscience (Switzerland), 2018, 8, 1043-1051.                                                 | 3.1 | 0         |
| 121 | Influence of Synthesis-Dependent Structural Morphology on Performance of Natural Dye-Sensitized<br>ZnO Solar Cells. Jom, 2019, 71, 1477-1484.                                                                                            | 1.9 | 0         |