
Maria Petracca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2121487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered anterior default mode network dynamics in progressive multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 206-216.	3.0	4
2	Changes in lymphocytes, neutrophils and immunoglobulins in year-1 cladribine treatment in multiple sclerosis and Related Disorders, 2022, 57, 103431.	2.0	5
3	The central vein sign helps in differentiating multiple sclerosis from its mimickers: lessons from Fabry disease. European Radiology, 2022, , 1.	4.5	4
4	Mental Health in Multiple Sclerosis During the COVID-19 Outbreak: A Delicate Balance between Fear of Contagion and Resilience. Journal of Clinical Psychology in Medical Settings, 2022, 29, 798-807.	1.4	2
5	Editorial: Multi-Modal Imaging in Neurological Conditions: Translational Applications. Frontiers in Neurology, 2022, 13, 855122.	2.4	0
6	Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach. European Radiology, 2022, 32, 5382-5391.	4.5	13
7	Classification of multiple sclerosis patients based on structural disconnection: A robust feature selection approach. Journal of Neuroimaging, 2022, 32, 647-655.	2.0	8
8	Emergency medical care for multiple sclerosis: A five-year population study in the Campania Region (South Italy). Multiple Sclerosis Journal, 2022, 28, 597-607.	3.0	10
9	Consensus Paper: Ataxic Gait. Cerebellum, 2022, , 1.	2.5	9
10	Impact of an anti-infective screening and monitoring protocol together with infectious disease consultation in preventing infective adverse events in patients treated with anti-CD20/CD52 agents for multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 63, 103814.	2.0	2
11	Quantitative MRI in Multiple Sclerosis: From Theory to Application. American Journal of Neuroradiology, 2022, 43, 1688-1695.	2.4	2
12	A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 420-429.	3.0	73
13	Non-invasive quantification of inflammation, axonal and myelin injury in multiple sclerosis. Brain, 2021, 144, 213-223.	7.6	27
14	Depression is associated with disconnection of neurotransmitter-related nuclei in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1102-1111.	3.0	5
15	Diseaseâ€Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis. Annals of Neurology, 2021, 89, 780-789.	5.3	370
16	Physical Exercise Moderates the Effects of Disability on Depression in People with Multiple Sclerosis during the COVID-19 Outbreak. Journal of Clinical Medicine, 2021, 10, 1234.	2.4	10
17	Neuroimaging Correlates of Cognitive Dysfunction in Adults with Multiple Sclerosis. Brain Sciences, 2021, 11, 346.	2.3	23
18	Exit Strategies in Natalizumab-Treated RRMS at High Risk of Progressive Multifocal Leukoencephalopathy: a Multicentre Comparison Study. Neurotherapeutics, 2021, 18, 1166-1174.	4.4	24

#	Article	IF	CITATIONS
19	Unraveling Deep Gray Matter Atrophy and Iron and Myelin Changes in Multiple Sclerosis. American Journal of Neuroradiology, 2021, 42, 1223-1230.	2.4	19
20	Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis. Journal of Neurology, 2021, 268, 4834-4845.	3.6	16
21	A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis. Journal of Neurology, 2021, 268, 4698-4706.	3.6	11
22	DMTs and Covidâ€19 severity in MS: a pooled analysis from Italy and France. Annals of Clinical and Translational Neurology, 2021, 8, 1738-1744.	3.7	86
23	Walk Your Talk: Real-World Adherence to Guidelines on the Use of MRI in Multiple Sclerosis. Diagnostics, 2021, 11, 1310.	2.6	2
24	A Combined Radiomics and Machine Learning Approach to Overcome the Clinicoradiologic Paradox in Multiple Sclerosis. American Journal of Neuroradiology, 2021, 42, 1927-1933.	2.4	9
25	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. NeuroImage, 2021, 243, 118502.	4.2	94
26	ProspeCtive study to evaluate efficacy, safety and tOlerability of dietary supplemeNT of Curcumin (BCM95) in subjects with Active relapsing MultIple Sclerosis treated with subcutaNeous Interferon beta 1a 44 mcg TIW (CONTAIN): A randomized, controlled trial. Multiple Sclerosis and Related Disorders, 2021, 56, 103274.	2.0	16
27	Clinical relevance of atrophy, myelin and iron brain microstructural alterations in multiple sclerosis: A multi-parameter MRI study. Journal of the Neurological Sciences, 2021, 429, 118169.	0.6	Ο
28	Ocrelizumab treatment in multiple sclerosis: Prospective real world observational multi-center study in Campania, Italy. Journal of the Neurological Sciences, 2021, 429, 118129.	0.6	0
29	Retinal and choriocapillary vascular changes in early stages of multiple sclerosis: A prospective study. Journal of the Neurological Sciences, 2021, 429, 118834.	0.6	0
30	Cerebellar pathology and disability worsening in relapsingâ€remitting multiple sclerosis: a retrospective analysis from the CombiRx trial. European Journal of Neurology, 2021, 29, 515.	3.3	1
31	Relationship Between Retinal Layer Thickness and Disability Worsening in Relapsing-Remitting and Progressive Multiple Sclerosis. Journal of Neuro-Ophthalmology, 2021, 41, 329-334.	0.8	5
32	Retinal and Choriocapillary Vascular Changes in Early Stages of Multiple Sclerosis: A Prospective Study. Journal of Clinical Medicine, 2021, 10, 5756.	2.4	8
33	SUITer: An Automated Method for Improving Segmentation of Infratentorial Structures at Ultraâ€Highâ€Field MRI. Journal of Neuroimaging, 2020, 30, 28-39.	2.0	4
34	Laminar analysis of the cortical T1/T2-weighted ratio at 7T. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	11
35	COVIDâ€19 pandemic and mental distress in multiple sclerosis: implications for clinical management. European Journal of Neurology, 2020, 28, 3375-3383.	3.3	47
36	The Development of Subcortical Gray Matter Atrophy in Multiple Sclerosis: One Size Does Not Fit All. American Journal of Neuroradiology, 2020, 41, E80-E81.	2.4	2

#	Article	IF	CITATIONS
37	Lower cortical gamma-aminobutyric acid level contributes to increased connectivity in sensory-motor regions in progressive MS. Multiple Sclerosis and Related Disorders, 2020, 43, 102183.	2.0	4
38	Mild or no COVID-19 symptoms in cladribine-treated multiple sclerosis: Two cases and implications for clinical practice. Multiple Sclerosis and Related Disorders, 2020, 45, 102452.	2.0	37
39	Retrospective unbiased plasma lipidomic of progressive multiple sclerosis patients-identifies lipids discriminating those with faster clinical deterioration. Scientific Reports, 2020, 10, 15644.	3.3	7
40	Prevalence of SARS-CoV-2 Antibodies in Multiple Sclerosis: The Hidden Part of the Iceberg. Journal of Clinical Medicine, 2020, 9, 4066.	2.4	19
41	Validation of the Italian version of the Multiple Sclerosis Intimacy and Sexuality Questionnaire-19. Neurological Sciences, 2020, 42, 2903-2910.	1.9	8
42	Sensoryâ€motor network topology in multiple sclerosis: Structural connectivity analysis accounting for intrinsic density discrepancy. Human Brain Mapping, 2020, 41, 2951-2963.	3.6	26
43	Streamline density and lesion volume reveal a postero–anterior gradient of corpus callosum damage in multiple sclerosis. European Journal of Neurology, 2020, 27, 1076-1082.	3.3	7
44	Peripapillary Vessel Density as Early Biomarker in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 542.	2.4	35
45	2D linear measures of ventricular enlargement may be relevant markers of brain atrophy and long-term disability progression in multiple sclerosis. European Radiology, 2020, 30, 3813-3822.	4.5	18
46	A metabolic perspective on CSF-mediated neurodegeneration in multiple sclerosis. Brain, 2019, 142, 2756-2774.	7.6	35
47	Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course. EBioMedicine, 2019, 43, 392-410.	6.1	36
48	Axonal water fraction as marker of white matter injury in primaryâ€progressive multiple sclerosis: a longitudinal study. European Journal of Neurology, 2019, 26, 1068-1074.	3.3	11
49	Sensory-motor disability in African-American and Caucasian patients with multiple sclerosis: A prospective longitudinal study. Journal of the Neurological Sciences, 2019, 405, 59.	0.6	Ο
50	Relationship between retinal inner nuclear layer, age, and disease activity in progressive MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e596.	6.0	23
51	MRI features suggestive of gadolinium retention do not correlate with Expanded Disability Status Scale worsening in Multiple Sclerosis. Neuroradiology, 2019, 61, 155-162.	2.2	38
52	Cognitive performance in mid-stage Parkinson's disease: functional connectivity under chronic antiparkinson treatment. Brain Imaging and Behavior, 2019, 13, 200-209.	2.1	11
53	Clinical applications of ultra-high field magnetic resonance imaging in multiple sclerosis. Expert Review of Neurotherapeutics, 2018, 18, 221-230.	2.8	20
54	MRI in multiple sclerosis: clinical and research update. Current Opinion in Neurology, 2018, 31, 249-255.	3.6	25

#	Article	IF	CITATIONS
55	Brain microstructural injury occurs in patients with RRMS despite â€~no evidence of disease activity'. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 977-982.	1.9	16
56	Looking into cognitive impairment in primaryâ€progressive multiple sclerosis. European Journal of Neurology, 2018, 25, 192-195.	3.3	9
57	Monitoring Progressive Multiple Sclerosis with Novel Imaging Techniques. Neurology and Therapy, 2018, 7, 265-285.	3.2	14
58	Cerebellum and cognition in progressive MS patients: functional changes beyond atrophy?. Journal of Neurology, 2018, 265, 2260-2266.	3.6	20
59	An MRI evaluation of grey matter damage in African Americans with MS. Multiple Sclerosis and Related Disorders, 2018, 25, 29-36.	2.0	18
60	Retinal degeneration in primary-progressive multiple sclerosis: A role for cortical lesions?. Multiple Sclerosis Journal, 2017, 23, 43-50.	3.0	40
61	Synchronization and variability imbalance underlie cognitive impairment in primary-progressive multiple sclerosis. Scientific Reports, 2017, 7, 46411.	3.3	27
62	A composite measure to explore visual disability in primary progressive multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2017, 3, 205521731770962.	1.0	3
63	The relationship between cortical lesions and periventricular NAWM abnormalities suggests a shared mechanism of injury in primary-progressive MS. NeuroImage: Clinical, 2017, 16, 111-115.	2.7	12
64	Upper motor neuron evaluation in multiple sclerosis patients treated with Sativex [®] . Acta Neurologica Scandinavica, 2017, 135, 442-448.	2.1	16
65	Unicuique suum: Investigating cerebellar lobules contribution to clinical disability in progressive multiple sclerosis. Journal of the Neurological Sciences, 2017, 381, 261.	0.6	0
66	Cerebellar lobule atrophy and disability in progressive MS. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 1065-1072.	1.9	47
67	Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging. World Journal of Radiology, 2017, 9, 371-388.	1.1	44
68	Cerebellar volume as imaging outcome in progressive multiple sclerosis. PLoS ONE, 2017, 12, e0176519.	2.5	19
69	Sodium MRI of multiple sclerosis. NMR in Biomedicine, 2016, 29, 153-161.	2.8	43
70	The management of multiple sclerosis by reference centers in south of Italy: a 2011 survey on health demands and needs in Campania region. Neurological Sciences, 2016, 37, 315-322.	1.9	3
71	Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study. Brain, 2016, 139, 795-806.	7.6	76
72	Longitudinal assessment of immuno-metabolic parameters in multiple sclerosis patients during treatment with glatiramer acetate. Metabolism: Clinical and Experimental, 2015, 64, 1112-1121.	3.4	26

#	Article	IF	CITATIONS
73	Association of Deep Gray Matter Damage With Cortical and Spinal Cord Degeneration in Primary Progressive Multiple Sclerosis. JAMA Neurology, 2015, 72, 1466.	9.0	32
74	Therapeutic strategies in multiple sclerosis: A focus on neuroprotection and repair and relevance to schizophrenia. Schizophrenia Research, 2015, 161, 94-101.	2.0	16
75	Neuroimaging of Multiple Sclerosis, Acute Disseminated Encephalomyelitis, and Other Demyelinating Diseases. Seminars in Roentgenology, 2014, 49, 76-85.	0.6	24
76	Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis. Journal of the Neurological Sciences, 2013, 330, 61-66.	0.6	56
77	Idiopathic late-onset cerebellar ataxia with cerebellar atrophy in a patient diagnosed with Chiari I malformation: a case report. Neurological Sciences, 2013, 34, 2235-2237.	1.9	4
78	Imaging multiple sclerosis and other neurodegenerative diseases. Prion, 2013, 7, 47-54.	1.8	22
79	Sporadic Porphyria Cutanea Tarda in a Patient with Multiple Sclerosis Treated with Interferon Beta 1-a		