
Lizhong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures. Environmental Science & Technology, 2008, 42, 5137-5143.	10.0	1,446
2	Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environmental Science & Technology, 2006, 40, 1855-1861.	10.0	699
3	Toxicity of ZnO Nanoparticles to <i>Escherichia coli</i> : Mechanism and the Influence of Medium Components. Environmental Science & Technology, 2011, 45, 1977-1983.	10.0	683
4	Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 2017, 227, 98-115.	7.5	634
5	Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environmental Science & Technology, 2018, 52, 5027-5047.	10.0	593
6	Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere, 2004, 55, 1169-1178.	8.2	420
7	Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures. Environmental Science & Technology, 2014, 48, 3411-3419.	10.0	406
8	Aqueous Adsorption of Aniline, Phenol, and their Substitutes by Multi-Walled Carbon Nanotubes. Environmental Science & Technology, 2008, 42, 7931-7936.	10.0	371
9	Quantification of Chemical States, Dissociation Constants and Contents of Oxygen-containing Groups on the Surface of Biochars Produced at Different Temperatures. Environmental Science & Technology, 2015, 49, 309-317.	10.0	277
10	Competitive Sorption of Pyrene, Phenanthrene, and Naphthalene on Multiwalled Carbon Nanotubes. Environmental Science & Technology, 2006, 40, 5804-5810.	10.0	275
11	Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China. Journal of Hazardous Materials, 2006, 137, 68-75.	12.4	260
12	POLSOIL: research on soil pollution in China. Environmental Science and Pollution Research, 2018, 25, 1-3.	5.3	260
13	Organic contamination and remediation in the agricultural soils of China: A critical review. Science of the Total Environment, 2018, 615, 724-740.	8.0	250
14	Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Research, 2004, 38, 3558-3568.	11.3	248
15	Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology, 2017, 11, 591-612.	3.0	244
16	Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of the Total Environment, 2018, 622-623, 1391-1399.	8.0	223
17	Sorption of Polar and Nonpolar Aromatic Organic Contaminants by Plant Cuticular Materials:  Role of Polarity and Accessibility. Environmental Science & Technology, 2005, 39, 6138-6146.	10.0	222
18	Sorption of Phenol,p-Nitrophenol, and Aniline to Dual-Cation Organobentonites from Water. Environmental Science & Technology, 2000, 34, 468-475.	10.0	206

#	Article	IF	CITATIONS
19	Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants. Chemosphere, 2003, 53, 459-467.	8.2	199
20	Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environmental Pollution, 2013, 173, 97-102.	7.5	193
21	Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere, 2003, 50, 611-618.	8.2	180
22	Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catalysis Today, 2007, 126, 463-470.	4.4	169
23	Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR. Journal of Colloid and Interface Science, 2005, 286, 239-244.	9.4	168
24	Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). Journal of Hazardous Materials, 2009, 170, 7-12.	12.4	164
25	Enhanced Soil Washing of Phenanthrene by Mixed Solutions of TX100 and SDBS. Environmental Science & Technology, 2006, 40, 4274-4280.	10.0	162
26	Polycyclic Aromatic Hydrocarbons (PAHs) in Indoor and Outdoor Air of Hangzhou, China. Environmental Science & Technology, 2001, 35, 840-844.	10.0	156
27	Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Science of the Total Environment, 2016, 544, 670-676.	8.0	155
28	Metabolomics analysis of TiO 2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environmental Pollution, 2017, 230, 302-310.	7.5	146
29	Concentrations and health risk of polycyclic aromatic hydrocarbons in tea. Food and Chemical Toxicology, 2005, 43, 41-48.	3.6	144
30	Antibiotics in the agricultural soils from the Yangtze River Delta, China. Chemosphere, 2017, 189, 301-308.	8.2	143
31	Use of Cetyltrimethylammonium Bromide-Bentonite To Remove Organic Contaminants of Varying Polar Character from Water. Environmental Science & Technology, 1998, 32, 3374-3378.	10.0	133
32	Sorption Behavior of p-Nitrophenol on the Interface between Anionâ^'Cation Organobentonite and Water. Environmental Science & Technology, 2000, 34, 2997-3002.	10.0	133
33	Interactions of Organic Contaminants with Mineral-Adsorbed Surfactants. Environmental Science & Technology, 2003, 37, 4001-4006.	10.0	133
34	Comparative study on indoor air quality in Japan and China: Characteristics of residential indoor and outdoor VOCs. Atmospheric Environment, 2009, 43, 6352-6359.	4.1	133
35	Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. Environmental Pollution, 2016, 219, 329-336.	7.5	132
36	Configurations of the Bentonite-Sorbed Myristylpyridinium Cation and Their Influences on the Uptake of Organic Compounds. Environmental Science & Technology, 2005, 39, 6093-6100.	10.0	130

#	Article	IF	CITATIONS
37	Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. Environmental Pollution, 2016, 214, 806-815.	7.5	126
38	Sorption of Organobentonites to Some Organic Pollutants in Water. Environmental Science & Technology, 1997, 31, 1407-1410.	10.0	122
39	Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant–PAHs system. Environmental Pollution, 2007, 147, 66-73.	7.5	122
40	Solubilization and biodegradation of phenanthrene in mixed anionic–nonionic surfactant solutions. Chemosphere, 2005, 58, 33-40.	8.2	118
41	Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China. Journal of Hazardous Materials, 2007, 141, 148-155.	12.4	116
42	Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant. Environmental Pollution, 2008, 156, 1368-1370.	7.5	113
43	Enhanced desorption and biodegradation of phenanthrene in soil–water systems with the presence of anionic–nonionic mixed surfactants. Journal of Hazardous Materials, 2007, 142, 354-361.	12.4	112
44	Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain. Bioresource Technology, 2013, 142, 454-461.	9.6	110
45	Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China. Environmental Pollution, 2008, 152, 569-575.	7.5	106
46	Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. Journal of Hazardous Materials, 2009, 162, 1165-1170.	12.4	104
47	Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere, 2017, 178, 301-308.	8.2	104
48	Synergetic effect of a pillared bentonite support on SE(VI) removal by nanoscale zero valent iron. Applied Catalysis B: Environmental, 2015, 174-175, 329-335.	20.2	100
49	Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmospheric Environment, 2009, 43, 978-983.	4.1	98
50	Solubilization of polycyclic aromatic hydrocarbons by anionic–nonionic mixed surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 255, 145-152.	4.7	92
51	Reduced carbon sequestration potential of biochar in acidic soil. Science of the Total Environment, 2016, 572, 129-137.	8.0	92
52	Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant. Environmental Pollution, 2011, 159, 1198-1204.	7.5	91
53	Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. Science of the Total Environment, 2021, 792, 148352.	8.0	88
54	Photosensitized Oxidation of Substituted Phenols on Aluminum Phthalocyanine-Intercalated Organoclay. Environmental Science & Technology, 2005, 39, 651-657.	10.0	87

#	Article	IF	CITATIONS
55	Distribution of polycyclic aromatic hydrocarbons in water, sediment and soil in drinking water resource of Zhejiang Province, China. Journal of Hazardous Materials, 2008, 150, 308-316.	12.4	87
56	Catalytic degradation of Orange II by UV-Fenton with hydroxyl-Fe-pillared bentonite in water. Chemosphere, 2006, 65, 1249-1255.	8.2	82
57	Persistent chlorinated pesticides in fish species from Qiantang River in East China. Chemosphere, 2007, 68, 838-847.	8.2	81
58	Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environmental Science and Pollution Research, 2016, 23, 14451-14461.	5.3	81
59	Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. Journal of Hazardous Materials, 2006, 136, 982-988.	12.4	80
60	Pollution survey of polycyclic aromatic hydrocarbons in surface water of Hangzhou, China. Chemosphere, 2004, 56, 1085-1095.	8.2	77
61	Sorption of sodium dodecylbenzene sulfonate by montmorillonite. Environmental Pollution, 2007, 145, 571-576.	7.5	75
62	Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 425, 122-128.	4.7	75
63	Sorption of Polycyclic Aromatic Hydrocarbons to Carbohydrates and Lipids of Ryegrass Root and Implications for a Sorption Prediction Model. Environmental Science & Technology, 2009, 43, 2740-2745.	10.0	73
64	Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environmental Pollution, 2012, 164, 169-174.	7.5	73
65	Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant. Environmental Pollution, 2007, 147, 350-357.	7.5	72
66	Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. Journal of Hazardous Materials, 2007, 139, 193-198.	12.4	72
67	Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Scientific Reports, 2015, 5, 11641.	3.3	72
68	Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environmental Pollution, 2008, 156, 46-52.	7.5	71
69	Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2. Catalysis Today, 2014, 225, 24-33.	4.4	71
70	Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil. Science of the Total Environment, 2017, 584-585, 776-782.	8.0	71
71	Tea Plant Uptake and Translocation of Polycyclic Aromatic Hydrocarbons from Water and around Air. Journal of Agricultural and Food Chemistry, 2006, 54, 3658-3662.	5.2	69
72	Sorption characteristics of CTMA–bentonite complexes as controlled by surfactant packing density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 221-227.	4.7	69

#	Article	IF	CITATIONS
73	Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA–montmorillonite hybrids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 304, 41-48.	4.7	69
74	Enhanced soil flushing of phenanthrene by anionic–nonionic mixed surfactant. Water Research, 2008, 42, 101-108.	11.3	69
75	Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions. Science of the Total Environment, 2021, 782, 146824.	8.0	69
76	The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions. Journal of Hazardous Materials, 2010, 178, 282-286.	12.4	67
77	Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2′,4,4′-tetrabromodiphenyl ether. Environment International, 2019, 133, 105154.	10.0	66
78	Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China. Chemosphere, 2019, 224, 900-909.	8.2	66
79	Adsorption and Conformation of a Cationic Surfactant on Single-Walled Carbon Nanotubes and Their Influence on Naphthalene Sorption. Environmental Science & Technology, 2010, 44, 681-687.	10.0	65
80	Distribution of polycyclic aromatic hydrocarbons in soil–water system containing a nonionic surfactant. Chemosphere, 2005, 60, 1237-1245.	8.2	64
81	Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. Journal of Hazardous Materials, 2009, 164, 700-706.	12.4	64
82	Concentrations and characteristics of organochlorine pesticides in aquatic biota from Qiantang River in China. Environmental Pollution, 2008, 151, 190-199.	7.5	63
83	Sugar Cane-Converted Graphene-like Material for the Superhigh Adsorption of Organic Pollutants from Water via Coassembly Mechanisms. Environmental Science & Technology, 2017, 51, 12644-12652.	10.0	63
84	Structure of cetyltrimethylammonium intercalated hydrobiotite. Applied Clay Science, 2008, 42, 224-231.	5.2	61
85	Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. Science of the Total Environment, 2020, 726, 137978.	8.0	61
86	Sorption of naphthalene and phosphate to the CTMAB–Al13 intercalated bentonites. Journal of Hazardous Materials, 2009, 168, 1590-1594.	12.4	60
87	Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. Environmental Geochemistry and Health, 2017, 39, 369-378.	3.4	60
88	A multi-component statistic analysis for the influence of sediment/soil composition on the sorption of a nonionic surfactant (Triton X-100) onto natural sediments/soils. Water Research, 2003, 37, 4792-4800.	11.3	59
89	Simultaneous removal of acid dye and cationic surfactant from water by bentonite in one-step process. Chemical Engineering Journal, 2008, 139, 503-509.	12.7	59
90	Effect of oxidation-induced aging on the adsorption and co-adsorption of tetracycline and Cu2+ onto biochar. Science of the Total Environment, 2019, 673, 522-532.	8.0	59

#	Article	IF	CITATIONS
91	Application of the partition-limited model for plant uptake of organic chemicals from soil and water. Science of the Total Environment, 2005, 336, 171-182.	8.0	58
92	Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment. Environmental Science and Pollution Research, 2018, 25, 4-11.	5.3	58
93	Antibiotic resistance genes (ARCs) in agricultural soils from the Yangtze River Delta, China. Science of the Total Environment, 2020, 740, 140001.	8.0	57
94	Characterization of Sorption Mechanisms of VOCs with Organobentonites Using a LSER Approach. Environmental Science & Technology, 2004, 38, 489-495.	10.0	56
95	Removal of polycyclic aromatic hydrocarbons from surfactant solutions by selective sorption with organo-bentonite. Chemical Engineering Journal, 2013, 233, 251-257.	12.7	56
96	The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Scientific Reports, 2017, 7, 7130.	3.3	56
97	Sorption of phenanthrene to biochar modified by base. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	56
98	Enhanced Photodegradation of 2,4,6-Trichlorophenol over Palladium Phthalocyaninesulfonate Modified Organobentonite. Langmuir, 2005, 21, 10602-10607.	3.5	55
99	Levels and source of organochlorine pesticides in surface waters of Qiantang River, China. Environmental Monitoring and Assessment, 2007, 136, 277-287.	2.7	55
100	Role of the Extractable Lipids and Polymeric Lipids in Sorption of Organic Contaminants onto Plant Cuticles. Environmental Science & Technology, 2008, 42, 1517-1523.	10.0	55
101	Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp. SA01. Bioresource Technology, 2012, 123, 42-48.	9.6	55
102	Metabolomic and Transcriptomic Investigation of Metabolic Perturbations in <i>Oryza sativa</i> L. Triggered by Three Pesticides. Environmental Science & Technology, 2020, 54, 6115-6124.	10.0	53
103	UV-Fenton discolouration and mineralization of Orange II over hydroxyl-Fe-pillared bentonite. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 56-64.	3.9	52
104	Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. Journal of Colloid and Interface Science, 2009, 331, 8-14.	9.4	51
105	Effect of TiO2 content on the properties of polysulfone nanofiltration membranes modified with a layer of TiO2–graphene oxide. Separation and Purification Technology, 2020, 242, 116770.	7.9	50
106	Factors Affecting Transfer of Polycyclic Aromatic Hydrocarbons from Made Tea to Tea Infusion. Journal of Agricultural and Food Chemistry, 2006, 54, 4350-4354.	5.2	49
107	Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review. Science of the Total Environment, 2021, 760, 143413.	8.0	49
108	Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 2007, 68, 1883-1888.	8.2	48

#	Article	IF	CITATIONS
109	Distribution, input pathway and soil–air exchange of polycyclic aromatic hydrocarbons in Banshan Industry Park, China. Science of the Total Environment, 2013, 444, 177-182.	8.0	48
110	A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfate. Journal of Hazardous Materials, 2005, 119, 205-211.	12.4	47
111	Multimedia modeling of the PAH concentration and distribution in the Yangtze River Delta and human health risk assessment. Science of the Total Environment, 2019, 647, 962-972.	8.0	47
112	Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to daphnia. Environmental Pollution, 2019, 247, 421-430.	7.5	47
113	Levels and distribution of organochlorine pesticides in shellfish from Qiantang River, China. Journal of Hazardous Materials, 2008, 152, 1192-1200.	12.4	46
114	Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. Environmental Science and Pollution Research, 2018, 25, 34-42.	5.3	46
115	Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure. Science of the Total Environment, 2019, 653, 658-666.	8.0	45
116	Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	44
117	Silylated pillared clay (SPILC): A novel bentonite-based inorgano–organo composite sorbent synthesized by integration of pillaring and silylation. Journal of Colloid and Interface Science, 2007, 315, 191-199.	9.4	43
118	Microstructure of organo-bentonites in water and the effect of steric hindrance on the uptake of organic compounds. Clays and Clay Minerals, 2008, 56, 144-154.	1.3	43
119	Comparison of greenhouse and open field cultivations across China: Soil characteristics, contamination and microbial diversity. Environmental Pollution, 2018, 243, 1509-1516.	7.5	43
120	Contamination of pyrethroids in agricultural soils from the Yangtze River Delta, China. Science of the Total Environment, 2020, 731, 139181.	8.0	43
121	Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation. Chemosphere, 2008, 70, 1987-1994.	8.2	41
122	Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants. Journal of Environmental Sciences, 2014, 26, 1071-1079.	6.1	41
123	Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether. Environmental Pollution, 2018, 237, 308-317.	7.5	41
124	Environmentally Relevant Concentrations of the Flame Retardant Tris(1,3-dichloro-2-propyl) Phosphate Inhibit the Growth and Reproduction of Earthworms in Soil. Environmental Science and Technology Letters, 2019, 6, 277-282.	8.7	41
125	Residual chlorine disrupts the microbial communities and spreads antibiotic resistance in freshwater. Journal of Hazardous Materials, 2022, 423, 127152.	12.4	41
126	Solubilization of DNAPLs by mixed surfactant: Reduction in partitioning losses of nonionic surfactant. Chemosphere, 2006, 62, 772-779.	8.2	40

#	Article	IF	CITATIONS
127	Gene Expression of an <i>Arthrobacter</i> in Surfactant-Enhanced Biodegradation of a Hydrophobic Organic Compound. Environmental Science & Technology, 2015, 49, 3698-3704.	10.0	40
128	Polychlorinated biphenyls in agricultural soils from the Yangtze River Delta of China: Regional contamination characteristics, combined ecological effects and human health risks. Chemosphere, 2016, 163, 422-428.	8.2	40
129	Effects of biochar on CH4 emission with straw application on paddy soil. Journal of Soils and Sediments, 2018, 18, 599-609.	3.0	40
130	Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants. Environmental Pollution, 2008, 152, 130-137.	7.5	39
131	Effect of SDBS–Tween 80 mixed surfactants on the distribution of polycyclic aromatic hydrocarbons in soil–water system. Journal of Soils and Sediments, 2010, 10, 1123-1130.	3.0	39
132	The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.). Environmental Pollution, 2018, 235, 692-699.	7.5	39
133	Adsorption of volatile organic compounds onto porous clay heterostructures based on spent organobentonites. Clays and Clay Minerals, 2005, 53, 123-136.	1.3	38
134	Comparative study of catalytic activity of different Fe-pillared bentonites in the presence of UV light and H2O2. Separation and Purification Technology, 2009, 67, 282-288.	7.9	38
135	Evaluating bioavailability of organic pollutants in soils by sequential ultrasonic extraction procedure. Chemosphere, 2016, 156, 21-29.	8.2	38
136	Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties. Chemosphere, 2005, 61, 116-128.	8.2	37
137	Structure of surfactant–clay complexes and their sorptive characteristics toward HOCs. Separation and Purification Technology, 2008, 63, 156-162.	7.9	37
138	Contamination of pyrethroids and atrazine in greenhouse and open-field agricultural soils in China. Science of the Total Environment, 2020, 701, 134916.	8.0	37
139	Organophosphorus pesticides in greenhouse and open-field soils across China: Distribution characteristic, polluted pathway and health risk. Science of the Total Environment, 2021, 765, 142757.	8.0	37
140	Sorption of phenanthrene by nanosized alumina coated with sequentially extracted humic acids. Environmental Science and Pollution Research, 2010, 17, 410-419.	5.3	35
141	Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China. Environmental Monitoring and Assessment, 2010, 163, 573-581.	2.7	35
142	Oxalate enhanced mechanism of hydroxyl-Fe-pillared bentonite during the degradation of Orange II by UV-Fenton process. Journal of Hazardous Materials, 2011, 185, 1477-1481.	12.4	35
143	A new speciation scheme of soil polycyclic aromatic hydrocarbons for risk assessment. Journal of Soils and Sediments, 2015, 15, 1139-1149.	3.0	35
144	Interconversion between Methoxylated and Hydroxylated Polychlorinated Biphenyls in Rice Plants: An Important but Overlooked Metabolic Pathway. Environmental Science & Technology, 2016, 50, 3668-3675.	10.0	35

#	Article	IF	CITATIONS
145	Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil. Science of the Total Environment, 2020, 747, 141265.	8.0	35
146	Minimizing losses of nonionic and anionic surfactants to a montmorillonite saturated with calcium using their mixtures. Journal of Colloid and Interface Science, 2005, 291, 59-66.	9.4	34
147	Thermodynamics of naphthalene sorption to organoclays: Role of surfactant packing density. Journal of Colloid and Interface Science, 2008, 322, 27-32.	9.4	34
148	Enhanced sorption of naphthalene and p-nitrophenol by Nano-SiO2 modified with a cationic surfactant. Water Research, 2013, 47, 4006-4012.	11.3	34
149	Sorption of polycyclic aromatic hydrocarbons to soils enhanced by heavy metals: perspective of molecular interactions. Journal of Soils and Sediments, 2016, 16, 1509-1518.	3.0	34
150	Formation of hydroxylated and methoxylated polychlorinated biphenyls by Bacillus subtilis: New insights into microbial metabolism. Science of the Total Environment, 2018, 613-614, 54-61.	8.0	34
151	Reducing plant uptake of PAHs by cationic surfactant-enhanced soil retention. Environmental Pollution, 2009, 157, 1794-1799.	7.5	32
152	Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. Environmental Pollution, 2017, 230, 927-935.	7.5	32
153	Prediction of phenanthrene uptake by plants with a partition-limited model. Environmental Pollution, 2004, 131, 505-508.	7.5	31
154	Enhanced microbial degradation of benzo[a]pyrene by chemical oxidation. Science of the Total Environment, 2019, 653, 1293-1300.	8.0	31
155	Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution. Science in China Series B: Chemistry, 2008, 51, 464-472.	0.8	30
156	Influence of surfactant sorption on the removal of phenanthrene from contaminated soils. Environmental Pollution, 2008, 152, 99-105.	7.5	30
157	Surface microtopography of surfactant modified montmorillonite. Applied Clay Science, 2009, 45, 70-75.	5.2	30
158	Sorption characteristics of nitrosodiphenylamine (NDPhA) and diphenylamine (DPhA) onto organo-bentonite from aqueous solution. Chemical Engineering Journal, 2014, 240, 487-493.	12.7	30
159	Separated pathways for biochar to affect soil N2O emission under different moisture contents. Science of the Total Environment, 2018, 645, 887-894.	8.0	30
160	Enhanced organic contaminants accumulation in crops: Mechanisms, interactions with engineered nanomaterials in soil. Environmental Pollution, 2018, 240, 51-59.	7.5	30
161	Performance of the partition-limited model on predicting ryegrass uptake of polycyclic aromatic hydrocarbons. Chemosphere, 2007, 67, 402-409.	8.2	29
162	Transformation of emerging disinfection byproducts Halobenzoquinones to haloacetic acids during chlorination of drinking water. Chemical Engineering Journal, 2021, 418, 129326.	12.7	28

#	Article	IF	CITATIONS
163	Molecular Structure and Sulfur Content Affect Reductive Dechlorination of Chlorinated Ethenes by Sulfidized Nanoscale Zerovalent Iron. Environmental Science & Technology, 2022, 56, 5808-5819.	10.0	28
164	Benzene vapor sorption by organobentonites from ambient air. Clays and Clay Minerals, 2002, 50, 421-427.	1.3	27
165	Removal of polycyclic aromatic hydrocarbons and phenols from coking wastewater by simultaneously synthesized organobentonite in a one-step process. Journal of Environmental Sciences, 2012, 24, 248-253.	6.1	27
166	Optimizing Nanoscale TiO ₂ for Adsorptionâ€Enhanced Photocatalytic Degradation of Lowâ€Concentration Air Pollutants. ChemCatChem, 2013, 5, 3114-3123.	3.7	27
167	Adsorptive Characteristics of the Siloxane Surfaces of Reduced-Charge Bentonites Saturated with Tetramethylammonium Cation. Environmental Science & Technology, 2008, 42, 7911-7917.	10.0	26
168	Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transport. Chemosphere, 2014, 107, 58-64.	8.2	26
169	Phytotoxicity and metabolic responses induced by tetrachlorobiphenyl and its hydroxylated and methoxylated derivatives in rice (Oryza sative L.). Environment International, 2020, 139, 105695.	10.0	25
170	Mitigation and remediation technologies for organic contaminated soils. Frontiers of Environmental Science and Engineering in China, 2010, 4, 373-386.	0.8	24
171	Occurrence, Formation, and Oxidative Stress of Emerging Disinfection Byproducts, Halobenzoquinones, in Tea. Environmental Science & Technology, 2019, 53, 11860-11868.	10.0	24
172	Binding Force and Site-Determined Desorption and Fragmentation of Antibiotic Resistance Genes from Metallic Nanomaterials. Environmental Science & Technology, 2021, 55, 9305-9316.	10.0	24
173	Increased disinfection byproducts in the air resulting from intensified disinfection during the COVID-19 pandemic. Journal of Hazardous Materials, 2021, 418, 126249.	12.4	24
174	Effect of soil components on the surfactant-enhanced soil sorption of PAHs. Journal of Soils and Sediments, 2012, 12, 161-168.	3.0	23
175	Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community. Bioresource Technology, 2013, 134, 17-23.	9.6	23
176	Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air. Journal of Environmental Sciences, 2015, 32, 189-195.	6.1	23
177	Synergistic remediation of PCB-contaminated soil with nanoparticulate zero-valent iron and alfalfa: targeted changes in the root metabolite-dependent microbial community. Environmental Science: Nano, 2021, 8, 986-999.	4.3	23
178	Multistage Defense System Activated by Tetrachlorobiphenyl and its Hydroxylated and Methoxylated Derivatives in <i>Oryza sativa</i> . Environmental Science & Technology, 2021, 55, 4889-4898.	10.0	23
179	Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds. Science of the Total Environment, 2022, 832, 155090.	8.0	23
180	Halohydroxybenzonitriles as a new group of halogenated aromatic DBPs in drinking water: Are they of comparable risk to halonitrophenols?. Water Research, 2022, 219, 118547.	11.3	23

#	Article	IF	CITATIONS
181	Structures of hexamethonium exchanged bentonite and the sorption characteristics for phenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 307, 1-6.	4.7	22
182	Effect of zinc on the transformation of haloacetic acids (HAAs) in drinking water. Journal of Hazardous Materials, 2010, 174, 40-46.	12.4	22
183	Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation. Scientific Reports, 2016, 6, 29782.	3.3	22
184	Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process. Frontiers of Environmental Science and Engineering, 2014, 8, 305-315.	6.0	21
185	Role of Pyrogenic Carbon in Parallel Microbial Reduction of Nitrobenzene in the Liquid and Sorbed Phases. Environmental Science & Technology, 2020, 54, 8760-8769.	10.0	21
186	Triton X-100 improves the reactivity and selectivity of sulfidized nanoscale zerovalent iron toward tetrabromobisphenol A: Implications for groundwater and soil remediation. Journal of Hazardous Materials, 2021, 416, 126119.	12.4	21
187	Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants. Journal of Hazardous Materials, 2020, 384, 121495.	12.4	20
188	Enhanced reactivity and mechanisms of mesoporous carbon supported zero-valent iron composite for trichloroethylene removal in batch studies. Science of the Total Environment, 2020, 718, 137256.	8.0	20
189	Formation and Cytotoxicity of Halophenylacetamides: A New Group of Nitrogenous Aromatic Halogenated Disinfection Byproducts in Drinking Water. Environmental Science & Technology, 2022, 56, 3181-3192.	10.0	20
190	Estimating Emissions and Environmental Fate of Di-(2-ethylhexyl) Phthalate in Yangtze River Delta, China: Application of Inverse Modeling. Environmental Science & Technology, 2016, 50, 2450-2458.	10.0	19
191	Airborne microorganisms exacerbate the formation of atmospheric ammonium and sulfate. Environmental Pollution, 2020, 263, 114293.	7.5	19
192	Characteristics of organobentonite prepared by microwave as a sorbent to organic contaminants in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 177-183.	4.7	18
193	Effects of mixed surfactants on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in crops and the bioremediation of contaminated farmlands. Science of the Total Environment, 2019, 646, 1211-1218.	8.0	18
194	Nano–Zoo Interfacial Interaction as a Design Principle for Hybrid Soil Remediation Technology. ACS Nano, 2021, 15, 14954-14964.	14.6	18
195	Effect of a cationic surfactant on the volatilization of PAHs from soil. Environmental Science and Pollution Research, 2012, 19, 1515-1523.	5.3	17
196	Co-occurrence of crAssphage and antibiotic resistance genes in agricultural soils of the Yangtze River Delta, China. Environment International, 2021, 156, 106620.	10.0	17
197	Sorption Behavior of Polycyclic Aromatic Hydrocarbons in Soil–Water System Containing Nonionic Surfactant. Environmental Engineering Science, 2004, 21, 263-272.	1.6	16
198	Acid-assisted hydrothermal synthesis of nanocrystalline TiO2 from titanate nanotubes: Influence of acids on the photodegradation of gaseous toluene. Journal of Environmental Sciences, 2015, 27, 232-240.	6.1	16

#	Article	IF	CITATIONS
199	Uptake, translocation, and metabolism of hydroxylated and methoxylated polychlorinated biphenyls in maize, wheat, and rice. Environmental Science and Pollution Research, 2018, 25, 12-17.	5.3	16
200	Addition of Shewanella oneidensis MR-1 to the Dehalococcoides-containing culture enhances the trichloroethene dechlorination. Environment International, 2019, 133, 105245.	10.0	16
201	Prediction of organic contaminant uptake by plants: Modified partition-limited model based on a sequential ultrasonic extraction procedure. Environmental Pollution, 2019, 246, 124-130.	7.5	16
202	Disturbed phospholipid metabolism by three polycyclic aromatic hydrocarbons in Oryza sativa. Environmental Pollution, 2021, 283, 117073.	7.5	16
203	Haloquinone Chloroimides as Toxic Disinfection Byproducts Identified in Drinking Water. Environmental Science & Technology, 2021, 55, 16347-16357.	10.0	16
204	Effects of iron mineral adhesion on bacterial conjugation: Interfering the transmission of antibiotic resistance genes through an interfacial process. Journal of Hazardous Materials, 2022, 435, 128889.	12.4	16
205	Effects of ionizable organic compounds in different species on the sorption of p-nitroaniline to sediment. Water Research, 2005, 39, 281-288.	11.3	15
206	Effect of nutrient conditions on the toxicity of naphthalene to Chlorella pyrenoidosa. Journal of Environmental Sciences, 2011, 23, 307-314.	6.1	15
207	Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO ₂ at short residence time. Environmental Technology (United Kingdom), 2013, 34, 1447-1454.	2.2	15
208	Spatial distributions of hexachlorobutadiene in agricultural soils from the Yangtze River Delta region of China. Environmental Science and Pollution Research, 2018, 25, 3378-3385.	5.3	15
209	Effects of mixed surfactants on the volatilization of naphthalene from aqueous solutions. Journal of Hazardous Materials, 2007, 140, 187-193.	12.4	14
210	Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system. Journal of Environmental Sciences, 2013, 25, 1355-1361.	6.1	13
211	Comparative Study of Fluorescence Enhancement of Some Fluorescence Systems in Different β-Cyclodextrin Derivatives and Cyclodextrin–Surfactant Media. Microchemical Journal, 1996, 53, 361-370.	4.5	12
212	Molecular Mechanism of Organic Pollutant-Induced Reduction of Carbon Fixation and Biomass Yield in <i>Oryza sativa</i> L. Environmental Science & Technology, 2022, 56, 4162-4172.	10.0	12
213	Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons. Journal of Environmental Sciences, 2013, 25, 531-536.	6.1	11
214	Transformation of hydroxylated and methoxylated 2,2′,4,4′,5-brominated diphenyl ether (BDE-99) in plants. Journal of Environmental Sciences, 2016, 49, 197-202.	6.1	11
215	Halonaphthoquinones: A group of emerging disinfection byproducts of high toxicity in drinking water. Water Research, 2022, 217, 118421.	11.3	11
216	Impact of a super typhoon on heavy metal distribution, migration, availability in agricultural soils. Environmental Pollution, 2021, 289, 117835.	7.5	10

#	Article	IF	CITATIONS
217	Determination of mercury in environmental and biological samples by cold vapour atomic absorption spectrometry. Mikrochimica Acta, 1993, 111, 207-213.	5.0	9
218	Fixed-bed study and modeling of selective phenanthrene removal from surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 100-107.	4.7	9
219	Enhanced treatment of dispersed dye-production wastewater by self-assembled organobentonite in a one-step process with poly-aluminium chloride. Scientific Reports, 2017, 7, 6843.	3.3	9
220	Film mulching reduces antibiotic resistance genes in the phyllosphere of lettuce. Journal of Environmental Sciences, 2022, 112, 121-128.	6.1	9
221	Molecular composition of halobenzoquinone precursors in natural organic matter in source water. Water Research, 2022, 209, 117901.	11.3	9
222	Quantitative identification of halo-methyl-benzoquinones as disinfection byproducts in drinking water using a pseudo-targeted LC-MS/MS method. Water Research, 2022, 218, 118466.	11.3	9
223	Effect of surfactant on phenanthrene metabolic kinetics by Citrobacter sp. SA01. Journal of Environmental Sciences, 2014, 26, 2298-2306.	6.1	8
224	Durability of organobentonite-amended liner for decelerating chloroform transport. Chemosphere, 2016, 149, 343-350.	8.2	8
225	Formation of chlorinated halobenzoquinones during chlorination of free aromatic amino acids. Science of the Total Environment, 2022, 825, 153904.	8.0	8
226	Microwave enhanced-sorption of dyestuffs to dual-cation organobentonites from water. Journal of Hazardous Materials, 2006, 136, 251-257.	12.4	7
227	Effect of copper on the translocation and transformation of polychlorinated biphenyls in rice. Chemosphere, 2018, 193, 514-520.	8.2	7
228	A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants. Environmental Pollution, 2020, 261, 114071.	7.5	7
229	Effect of anionic-nonionic mixed surfactant on ryegrass uptake of phenanthrene and pyrene from water. Science Bulletin, 2009, 54, 387-393.	9.0	6
230	Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air. Frontiers of Environmental Science and Engineering, 2016, 10, 219-228.	6.0	6
231	A Super Typhoon Disturbs Organic Contamination in Agricultural Soils. Environmental Science and Technology Letters, 2021, 8, 237-243.	8.7	6
232	Subcellular distribution of fluoranthene in Chlorella vulgaris with the presence of cetyltrimethylammonium chloride. Chemosphere, 2013, 90, 929-935.	8.2	5
233	Combined 1 H NMR and LSER study for the compound-specific interactions between organic contaminants and organobentonites. Journal of Colloid and Interface Science, 2015, 460, 119-127.	9.4	5
234	Human viruses lurking in the environment activated by excessive use of COVID-19 prevention supplies. Environment International, 2022, 163, 107192.	10.0	5

#	Article	IF	CITATIONS
235	β-Glucosidases as dominant dose-dependent regulators of Oryza sativa L. in response to typical organic pollutant exposures. Environmental Pollution, 2022, 309, 119709.	7.5	5
236	Application of α-Fe2O3 nanoparticles in controlling antibiotic resistance gene transport and interception in porous media. Science of the Total Environment, 2022, 834, 155271.	8.0	4
237	Simultaneous sorption of aqueous phenanthrene and phosphate onto bentonites modified with AlCl3 and CTMAB. Frontiers of Environmental Science and Engineering in China, 2007, 1, 79-82.	0.8	3
238	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 27, 279-289.	1.6	2
239	Self-cleaning liner for halogenated hydrocarbon control in landfill leachate. Scientific Reports, 2017, 7, 14140.	3.3	2
240	Iron Sulfide Enhanced the Dechlorination of Trichloroethene by Dehalococcoides mccartyi Strain 195. Frontiers in Microbiology, 2021, 12, 665281.	3.5	2
241	Influence of site-specific factors on antibiotic resistance in agricultural soils of Yangtze River Delta: An integrated study of multi-factor modeling. Science of the Total Environment, 2022, 838, 156474.	8.0	2
242	Pollution survey of carbonyl compounds in train air. Frontiers of Environmental Science and Engineering in China, 2007, 1, 125-128.	0.8	1
243	Mitigation and Remediation for Organic Contaminated Soils by Surfactants. , 2018, , 629-644.		1
244	"Waste―ing away: Presence of Cu ions influences microbial degradation kinetics and metabolite formation of the prevalent brominated flame retardant BDE-47. Journal of Environmental Sciences, 2020, 87, 421-424.	6.1	1
245	Prediction of phenanthrene uptake by plants with a partition-limited model. Environmental Pollution, 2004, 131, 505-505.	7.5	0
246	Bioavailability of polycyclic aromatic hydrocarbons in size fractions of field-contaminated sediment. , 2011, , .		0