Mohan B Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2120851/publications.pdf

Version: 2024-02-01

127	5,299	39	66
papers	citations	h-index	g-index
132	132	132	5837 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Shortâ€term heat stress during flowering results in a decline in Canola seed productivity. Journal of Agronomy and Crop Science, 2022, 208, 486-496.	3.5	14
2	Biological Parts for Engineering Abiotic Stress Tolerance in Plants. Biodesign Research, 2022, 2022, .	1.9	21
3	Molecular characterization of a soybean FT homologue, GmFT7. Scientific Reports, 2021, 11, 3651.	3.3	7
4	The Role of Endoplasmic Reticulum Stress Response in Pollen Development and Heat Stress Tolerance. Frontiers in Plant Science, 2021, 12, 661062.	3.6	37
5	Genome-Wide In Silico Identification and Comparative Analysis of Dof Gene Family in Brassica napus. Plants, 2021, 10, 709.	3.5	18
6	Overexpression of <i>PIF4</i> affects plant morphology and accelerates reproductive phase transitions in soybean. Food and Energy Security, 2021, 10, e291.	4.3	12
7	A dynamic intron retention program regulates the expression of several hundred genes during pollen meiosis. Plant Reproduction, 2021, 34, 225-242.	2.2	17
8	Circular RNAs Repertoire and Expression Profile during Brassica rapa Pollen Development. International Journal of Molecular Sciences, 2021, 22, 10297.	4.1	13
9	Towards Developing Drought-smart Soybeans. Frontiers in Plant Science, 2021, 12, 750664.	3.6	32
10	Analysis of the quinoa genome reveals conservation and divergence of the flowering pathways. Functional and Integrative Genomics, 2020, 20, 245-258.	3.5	22
11	High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 2020, 71, 555-568.	4.8	113
12	Somatic Embryogenesis and Plant Regeneration from Commercial Soybean Cultivars. Plants, 2020, 9, 38.	3.5	31
13	Global Role of Crop Genomics in the Face of Climate Change. Frontiers in Plant Science, 2020, 11, 922.	3.6	45
14	Rice 3D chromatin structure correlates with sequence variation and meiotic recombination rate. Communications Biology, 2020, 3, 235.	4.4	18
15	Engineering Multiple Abiotic Stress Tolerance in Canola, Brassica napus. Frontiers in Plant Science, 2020, 11, 3.	3.6	66
16	RNA-Seq Highlights Molecular Events Associated With Impaired Pollen-Pistil Interactions Following Short-Term Heat Stress in Brassica napus. Frontiers in Plant Science, 2020, 11, 622748.	3.6	18
17	Functional Genomics Approach Towards Dissecting Out Abiotic Stress Tolerance Trait in Plants. Sustainable Development and Biodiversity, 2019, , 1-24.	1.7	3
18	Genome-wide analysis of the Hsf gene family in Brassica oleracea and a comparative analysis of the Hsf gene family in B. oleracea, B. rapa and B. napus. Functional and Integrative Genomics, 2019, 19, 515-531.	3.5	44

#	Article	IF	Citations
19	IncRNAs in Plant and Animal Sexual Reproduction. Trends in Plant Science, 2018, 23, 195-205.	8.8	82
20	The Long Intergenic Noncoding RNA (LincRNA) Landscape of the Soybean Genome. Plant Physiology, 2018, 176, 2133-2147.	4.8	88
21	MCRiceRepGP: a framework for the identification of genes associated with sexual reproduction in rice. Plant Journal, 2018, 96, 188-202.	5.7	13
22	Genomic and molecular analysis of conserved and unique features of soybean PIF4. Scientific Reports, 2018, 8, 12569.	3.3	22
23	Enabling Molecular Technologies for Trait Improvement in Wheat. Methods in Molecular Biology, 2017, 1679, 3-24.	0.9	6
24	A novel role of the soybean clock gene LUX ARRHYTHMO in male reproductive development. Scientific Reports, 2017, 7, 10605.	3.3	22
25	<i>In Vitro</i> Plant Regeneration from Commercial Cultivars of Soybean. BioMed Research International, 2017, 2017, 1-9.	1.9	23
26	Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System. PLoS ONE, 2017, 12, e0169686.	2.5	6
27	Epigenetic landscape of germline specific genes in the sporophyte cells of Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 328.	3.6	7
28	Anther ontogeny in Brachypodium distachyon. Protoplasma, 2015, 252, 439-450.	2.1	16
29	Isolation and Characterization of Circadian Clock Genes in the Biofuel Plant Pongamia (Millettia) Tj ETQq1 1 (0.7843 <u>1</u> 4 rgBT	- Qverlock
30	Ultrastructure of microsporogenesis and microgametogenesis in Brachypodium distachyon. Protoplasma, 2015, 252, 1575-1586.	2.1	18
31	Unique and conserved features of floral evocation in legumes. Journal of Integrative Plant Biology, 2014, 56, 714-728.	8.5	17
32	miRNAs in the crosstalk between phytohormone signalling pathways. Journal of Experimental Botany, 2014, 65, 1425-1438.	4.8	227
33	Cytochemistry of pollen development in Brachypodium distachyon. Plant Systematics and Evolution, 2014, 300, 1639-1648.	0.9	8
34	Allergen microarray detects high prevalence of asymptomatic IgE sensitizations to tropical pollen-derived carbohydrates. Journal of Allergy and Clinical Immunology, 2014, 133, 910-914.e5.	2.9	40
35	RNA Sequencing Analysis of the Gametophyte Transcriptome from the Liverwort, Marchantia polymorpha. PLoS ONE, 2014, 9, e97497.	2.5	40
36	Characterization of mutants of a highly cross-reactive calcium-binding protein from Brassica pollen for allergen-specific immunotherapy. Immunobiology, 2013, 218, 1155-1165.	1.9	5

#	Article	IF	CITATIONS
37	Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean. BMC Plant Biology, 2013, 13, 105.	3.6	17
38	Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha. BMC Genomics, 2013, 14, 915.	2.8	24
39	Spatial expression of CLAVATA3 in the shoot apical meristem suggests it is not a stem cell marker in soybean. Journal of Experimental Botany, 2013, 64, 5641-5649.	4.8	17
40	An RNA-Seq Transcriptome Analysis of Histone Modifiers and RNA Silencing Genes in Soybean during Floral Initiation Process. PLoS ONE, 2013, 8, e77502.	2.5	33
41	The Dynamics of Soybean Leaf and Shoot Apical Meristem Transcriptome Undergoing Floral Initiation Process. PLoS ONE, 2013, 8, e65319.	2.5	40
42	Sample preparation for laser-microdissection of soybean shoot apical meristem. International Journal of Plant Biology, 2012, 3, 3.	2.6	1
43	Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage. New Phytologist, 2012, 195, 560-573.	7.3	64
44	A unified phylogeny-based nomenclature for histone variants. Epigenetics and Chromatin, 2012, 5, 7.	3.9	265
45	Comparative Genomic Analysis of Soybean Flowering Genes. PLoS ONE, 2012, 7, e38250.	2.5	99
46	Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. Journal of Endocrinology, 2011, 210, 5-14.	2.6	271
47	Putative cis-regulatory elements in genes highly expressed in rice sperm cells. BMC Research Notes, 2011, 4, 319.	1.4	46
48	Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean. Journal of Experimental Botany, 2011, 62, 4649-4659.	4.8	34
49	Transcriptome profiling of soybean root tips. Functional Plant Biology, 2011, 38, 451.	2.1	11
50	Effects on antioxidant status of liver following atrazine exposure and its attenuation by vitamin E. Experimental and Toxicologic Pathology, 2011, 63, 269-276.	2.1	76
51	Novel spatial expression of soybean WUSCHEL in the incipient floral primordia. Planta, 2011, 233, 553-560.	3.2	15
52	Comparative proteomic profiles of the soybean (<i>Glycine max</i>) root apex and differentiated root zone. Proteomics, 2011, 11, 1707-1719.	2.2	42
53	MicroRNAs in the shoot apical meristem of soybean. Journal of Experimental Botany, 2011, 62, 2495-2506.	4.8	80
54	A Genome-Wide Survey of Imprinted Genes in Rice Seeds Reveals Imprinting Primarily Occurs in the Endosperm. PLoS Genetics, 2011, 7, e1002125.	3.5	213

#	Article	IF	Citations
55	Alterations in Ca2+ homeostasis in rat erythrocytes with atrazine treatment: positive modulation by vitamin E. Molecular and Cellular Biochemistry, 2010, 340, 231-238.	3.1	13
56	Oxidative stress induced by atrazine in rat erythrocytes: Mitigating effect of vitamin E. Toxicology Mechanisms and Methods, 2010, 20, 119-126.	2.7	23
57	Floral initiation process at the soybean shoot apical meristem may involve multiple hormonal pathways. Plant Signaling and Behavior, 2009, 4, 648-651.	2.4	12
58	Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biology, 2009, 9, 25.	3.6	71
59	Genome-wide analysis of gene expression in soybean shoot apical meristem. Plant Molecular Biology, 2009, 69, 711-727.	3.9	26
60	Mapping of IgE-binding regions on recombinant Cyn d 1 , a major allergen from Bermuda Grass Pollen (BGP). Clinical and Molecular Allergy, 2009, 7, 3.	1.8	9
61	Molecular processes underlying the floral transition in the soybean shoot apical meristem. Plant Journal, 2009, 57, 832-845.	5.7	52
62	Molecular dissection of the pea shoot apical meristem*. Journal of Experimental Botany, 2009, 60, 4201-4213.	4.8	13
63	Evaluation of Molecular Basis of Cross Reactivity between Rye and Bermuda Grass Pollen Allergens. Allergology International, 2009, 58, 557-564.	3.3	7
64	Molecular repertoire of flowering plant male germ cells. Sexual Plant Reproduction, 2008, 21, 27-36.	2.2	31
65	Atrazineâ€induced alterations in rat erythrocyte membranes: Ameliorating effect of vitamin E. Journal of Biochemical and Molecular Toxicology, 2008, 22, 363-369.	3.0	24
66	Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nature Protocols, 2008, 3, 181-189.	12.0	122
67	Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance. BMC Plant Biology, 2008, 8, 73.	3.6	22
68	Biotechnology-based allergy diagnosis and vaccination. Trends in Biotechnology, 2008, 26, 153-161.	9.3	15
69	Protective effects of vitamin E against atrazine-induced genotoxicity in rats. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 654, 145-149.	1.7	60
70	Genetic engineering for removing food allergens from plants. Trends in Plant Science, 2008, 13, 257-260.	8.8	39
71	Transcriptome-Based Examination of Putative Pollen Allergens of Rice (Oryza sativa ssp. japonica). Molecular Plant, 2008, 1, 751-759.	8.3	27
72	Evaluation of genotoxicity induced by atrazine in rat tissues: attenuation by vitamin E. FASEB Journal, 2008, 22, 189-189.	0.5	0

#	Article	IF	CITATIONS
73	Control of male germâ€cell development in flowering plants. BioEssays, 2007, 29, 1124-1132.	2.5	39
74	Transcriptome profiling of Lilium longiflorum generative cells by cDNA microarray. Plant Cell Reports, 2007, 26, 1045-1052.	5.6	40
75	Transcriptional Repression Distinguishes Somatic from Germ Cell Lineages in a Plant. Science, 2006, 313, 496-499.	12.6	46
76	Plant stem cells carve their own niche. Trends in Plant Science, 2006, 11, 241-246.	8.8	49
77	Histone H3 variants in male gametic cells of lily and H3 methylation in mature pollen. Plant Molecular Biology, 2006, 62, 503-512.	3.9	38
78	Wheat transformation – an update of recent progress. Euphytica, 2006, 149, 353-366.	1.2	33
79	Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Reports, 2006, 25, 249-256.	5 . 6	44
80	Recombinant Expression Systems for Allergen Vaccines. Inflammation and Allergy: Drug Targets, 2006, 5, 53-59.	1.8	16
81	Expressed Sequence Tag Analysis of Lilium longiflorum Generative Cells. Plant and Cell Physiology, 2006, 47, 698-705.	3.1	49
82	Erythrocyte antioxidant enzymes in toxicological evaluation of commonly used organophosphate pesticides. Indian Journal of Experimental Biology, 2006, 44, 580-3.	0.0	17
83	Agrobacterium-mediated transformation and generation of male sterile lines of Australian canola. Australian Journal of Agricultural Research, 2005, 56, 353.	1.5	26
84	Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant Journal, 2005, 44, 557-568.	5.7	190
85	Transcriptional Activity of Male Gamete-specific Histone gcH3 Promoter in Sperm Cells of Lilium longiflorum. Plant and Cell Physiology, 2005, 46, 797-802.	3.1	25
86	Molecular Characterization of Polygalacturonases as Grass Pollen-Specific Marker Allergens: Expulsion from Pollen via Submicronic Respirable Particles. Journal of Immunology, 2004, 172, 6490-6500.	0.8	50
87	Knocking out expression of plant allergen genes. Methods, 2004, 32, 340-345.	3.8	24
88	Engineered allergens for immunotherapy. Current Opinion in Allergy and Clinical Immunology, 2004, 4, 569-573.	2.3	15
89	In vitro effects of organophosphate pesticides on rat erythrocytes. Indian Journal of Experimental Biology, 2004, 42, 292-6.	0.0	6
90	Hypoallergenic derivatives of major grass pollen allergens for allergy vaccination. Immunology and Cell Biology, 2003, 81, 86-91.	2.3	20

#	Article	IF	CITATIONS
91	Effect of cysteine mutagenesis on human IgE reactivity of recombinant forms of the major rye grass pollen allergen Lol p 1. Allergology International, 2003, 52, 183-190.	3.3	6
92	Isolation and characterization of a flowering plant male gametic cell-specific promoter 1. FEBS Letters, 2003, 542, 47-52.	2.8	35
93	Oral Immunization with a Recombinant Major Grass Pollen Allergen Induces Blocking Antibodies in Mice. International Archives of Allergy and Immunology, 2003, 130, 119-124.	2.1	10
94	Genetic purity analysis of hybrid broccoli (Brassica oleracea var. italica) seeds using RAPD PCR. Australian Journal of Agricultural Research, 2002, 53, 51.	1.5	11
95	Mutants of the major ryegrass pollen allergen, Lol p 5, with reduced IgE-binding capacity: candidates for grass pollen-specific immunotherapy. European Journal of Immunology, 2002, 32, 270-280.	2.9	76
96	Developmental expression of polyubiquitin genes and distribution of ubiquitinated proteins in generative and sperm cells. Sexual Plant Reproduction, 2002, 14, 325-329.	2.2	25
97	Title is missing!. Aerobiologia, 2002, 18, 87-106.	1.7	24
98	Molecular Mechanisms of DNA Damage and Repair: Progress in Plants. Critical Reviews in Biochemistry and Molecular Biology, 2001, 36, 337-397.	5.2	238
99	Identification of pronp1, a tobacco profilin gene activated in tip-growing cells. Plant Molecular Biology, 2001, 46, 531-538.	3.9	13
100	Hypoallergenic Forms of the Ryegrass Pollen Allergen Lol p 5 as Candidates for Immunotherapy. International Archives of Allergy and Immunology, 2001, 124, 380-382.	2.1	5
101	Reduction in Allergenicity of Grass Pollen by Genetic Engineering. International Archives of Allergy and Immunology, 2001, 124, 51-54.	2.1	25
102	Genetically Engineered Plant Allergens with Reduced Anaphylactic Activity. International Archives of Allergy and Immunology, 1999, 119, 75-85.	2.1	43
103	Male gametic cell-specific expression of H2A and H3 histone genes. Plant Molecular Biology, 1999, 39, 607-614.	3.9	71
104	Promoter region of Ory s 1 , the major rice pollen allergen gene. Sexual Plant Reproduction, 1999, 12, 125-126.	2.2	13
105	Plant homologue of human excision repair geneERCC1points to conservation of DNA repair mechanisms. Plant Journal, 1998, 13, 823-829.	5 . 7	73
106	Molecular basis of IgE-recognition of Lol p 5, a major allergen of rye-grass pollen. Molecular Immunology, 1998, 35, 293-305.	2.2	32
107	Engineering of hypoallergenic mutants of the <i>Brassica</i> pollen allergen, Bra r 1, for immunotherapy. FEBS Letters, 1998, 434, 255-260.	2.8	52
108	Isolation and collection of two populations of viable sperm cells from the pollen of Plumbago zeylanica. Zygote, 1998, 6, 295-298.	1.1	24

#	Article	IF	Citations
109	Cloning and expression in yeast Pichia pastoris of a biologically active form of Cyn d 1, the major allergen of Bermuda grass pollen. Journal of Allergy and Clinical Immunology, 1996, 98, 331-343.	2.9	70
110	Generative cells of Lilium longiflorum possess translatable mRNA and functional protein synthesis machinery. Plant Molecular Biology, 1996, 31, 1083-1086.	3.9	27
111	Recombinant Expression and Epitope Mapping of Grass Pollen Allergens. Advances in Experimental Medicine and Biology, 1996, 409, 147-155.	1.6	5
112	Molecular Characterization and Environmental Monitoring of Grass Pollen Allergens., 1996,, 176-210.		2
113	Molecular Characterization of Group I Allergens of Grass Pollen. , 1996, , 125-143.		2
114	Anther-Specific Gene Expression in Brassica and Arabidopsis. , 1996, , 38-52.		0
115	A cDNA clone encoding an IgE-binding protein from Brassica anther has significant sequence similarity to Ca2+-binding proteins. Plant Molecular Biology, 1995, 29, 1157-1165.	3.9	44
116	Cloning, expression and immunological characterization of Ory s 1 , the major allergen of rice pollen. Gene, $1995,164,255-259.$	2.2	41
117	Pollen allergens. Advances in Cellular and Molecular Biology of Plants, 1994, , 336-359.	0.2	4
118	Haploid and diploid expression of a Brassica campestris anther-specific gene promoter in Arabidopsis and tobacco. Molecular Genetics and Genomics, 1993, 239, 58-65.	2.4	35
119	Cloning of a cDNA encoding a group-V (group-IX) allergen isoform from rye-grass pollen that demonstrates specific antigenic immunoreactivity. Gene, 1993, 134, 235-240.	2.2	58
120	Peptide Mapping Analysis of Group I Allergens of Grass Pollens. International Archives of Allergy and Immunology, 1993, 102, 144-151.	2.1	29
121	Two consecutive thunderstorm associated epidemics of asthma in the city of Melbourne The possible role of rye grass pollen. Medical Journal of Australia, 1992, 156, 834-837.	1.7	217
122	The isolation and purification of surface specific proteins of somatic and reproductive protoplasts of lily and rapeseed. Physiologia Plantarum, 1992, 85, 396-402.	5.2	10
123	Pollen Allergens: Molecular Cloning and Mechanism for Pollen-induced Asthma. , 1992, , 7-11.		0
124	Cloning sequencing ofLol pl, the major allergenic protein of rye-grass pollen. FEBS Letters, 1991, 279, 210-215.	2.8	138
125	Isolation and Developmental Expression of Bcp1, an Anther-Specific cDNA Clone in Brassica campestris. Plant Cell, 1991, 3, 1073.	6.6	15
126	Molecular Aspects of the Development of Reproductive Cells. Current Plant Science and Biotechnology in Agriculture, 1991, , 333-366.	0.0	1

#	Article	IF	CITATIONS
127	Rapid Transcriptional Reprogramming Associated With Heat Stress-Induced Unfolded Protein Response in Developing Brassica napus Anthers. Frontiers in Plant Science, 0, 13, .	3.6	3