## Bhuvnesh Bharti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2120404/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microplastics through the Lens of Colloid Science. ACS Environmental Au, 2022, 2, 3-10.                                                                                                        | 7.0  | 54        |
| 2  | Controlled adhesion, membrane pinning and vesicle transport by Janus particles. Chemical<br>Communications, 2022, 58, 3055-3058.                                                               | 4.1  | 6         |
| 3  | Adsorption and Catalytic Activity of Gold Nanoparticles in Mesoporous Silica: Effect of Pore Size and Dispersion Salinity. Journal of Physical Chemistry C, 2022, 126, 2531-2541.              | 3.1  | 12        |
| 4  | Topologically Precise and Discrete Bottlebrush Polymers: Synthesis, Characterization, and<br>Structure–Property Relationships. Jacs Au, 2022, 2, 898-905.                                      | 7.9  | 23        |
| 5  | Field-Induced Assembly and Propulsion of Colloids. Langmuir, 2022, 38, 3001-3016.                                                                                                              | 3.5  | 27        |
| 6  | Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions. Communications Chemistry, 2022, 5, .                       | 4.5  | 8         |
| 7  | Lignin–Zein Composite: Synthesis, Three-Dimensional Printing, and Microbial Degradation. ACS<br>Sustainable Chemistry and Engineering, 2021, 9, 1781-1789.                                     | 6.7  | 17        |
| 8  | Characterisation of nano-assemblies inside mesopores using neutron scattering*. Molecular Physics, 2021, 119, .                                                                                | 1.7  | 2         |
| 9  | Nano-enhanced Bioremediation for Oil Spills: A Review. ACS ES&T Engineering, 2021, 1, 928-946.                                                                                                 | 7.6  | 49        |
| 10 | Fabrication and Electric Field-Driven Active Propulsion of Patchy Microellipsoids. Journal of Physical<br>Chemistry B, 2021, 125, 4232-4240.                                                   | 2.6  | 25        |
| 11 | Synthesis and characterization of ZEin-based Low Density Porous Absorbent (ZELDA) for oil spill recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126148. | 4.7  | 8         |
| 12 | Field-Driven Reversible Alignment and Gelation of Magneto-Responsive Soft Anisotropic Microbeads.<br>Journal of Physical Chemistry B, 2021, 125, 7900-7910.                                    | 2.6  | 6         |
| 13 | Elucidating the impact of side chain dispersity on the assembly of bottlebrush polymers at the <scp>airâ€water</scp> interface. Journal of Polymer Science, 2021, 59, 2458-2467.               | 3.8  | 5         |
| 14 | Foamitizer: High ethanol content foams using fatty acid crystalline particles. Journal of Colloid and<br>Interface Science, 2021, 600, 882-886.                                                | 9.4  | 6         |
| 15 | Adsorption of Myoglobin and Corona Formation on Silica Nanoparticles. Langmuir, 2020, 36,<br>14157-14165.                                                                                      | 3.5  | 33        |
| 16 | Increasing aspect ratio of particles suppresses buckling in shells formed by drying suspensions. Soft<br>Matter, 2020, 16, 9643-9647.                                                          | 2.7  | 7         |
| 17 | Magnetic field–driven assembly and reconfiguration of multicomponent supraparticles. Science<br>Advances, 2020, 6, eaba5337                                                                    | 10.3 | 37        |
| 18 | Adsorption of Fatty Acid Molecules on Amine-Functionalized Silica Nanoparticles: Surface<br>Organization and Foam Stability. Langmuir, 2020, 36, 3703-3712.                                    | 3.5  | 24        |

BHUVNESH BHARTI

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Active Reversible Swimming of Magnetically Assembled "Microscallops―in Non-Newtonian Fluids.<br>Langmuir, 2020, 36, 7148-7154.                                             | 3.5  | 30        |
| 20 | pH-Induced reorientation of cytochrome <i>c</i> on silica nanoparticles. Soft Matter, 2019, 15, 350-354.                                                                   | 2.7  | 26        |
| 21 | Directed Printing and Reconfiguration of Thermoresponsive Silicaâ€pNIPAM Nanocomposites.<br>Macromolecular Rapid Communications, 2019, 40, e1900191.                       | 3.9  | 9         |
| 22 | Directed propulsion of spherical particles along three dimensional helical trajectories. Nature Communications, 2019, 10, 2575.                                            | 12.8 | 59        |
| 23 | Directed Pore Uptake and Phase Separation of Surfactant Solutions under Confinement. Journal of<br>Physical Chemistry C, 2019, 123, 9957-9966.                             | 3.1  | 11        |
| 24 | Smart soft materials based on fatty acids. Inform, 2019, 30, 17-23.                                                                                                        | 0.1  | 0         |
| 25 | Magnetic Field-Driven Convection for Directed Surface Patterning of Colloids. Langmuir, 2018, 34, 15416-15424.                                                             | 3.5  | 15        |
| 26 | Binding of Lignin Nanoparticles at Oil–Water Interfaces: An Ecofriendly Alternative to Oil Spill<br>Recovery. ACS Applied Materials & Interfaces, 2018, 10, 43282-43289.   | 8.0  | 53        |
| 27 | Fabrication of Photoreactive Biocomposite Coatings via Electric Field-Assisted Assembly of<br>Cyanobacteria. Langmuir, 2017, 33, 5304-5313.                                | 3.5  | 14        |
| 28 | 3D Printing by Multiphase Silicone/Water Capillary Inks. Advanced Materials, 2017, 29, 1701554.                                                                            | 21.0 | 140       |
| 29 | Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. Science Advances, 2017, 3, e1701108.                                                | 10.3 | 90        |
| 30 | Bending of Responsive Hydrogel Sheets Guided by Fieldâ€Assembled Microparticle Endoskeleton<br>Structures. Small, 2016, 12, 2283-2290.                                     | 10.0 | 62        |
| 31 | Multidirectional colloidal assembly in concurrent electric and magnetic fields. Soft Matter, 2016, 12, 7747-7758.                                                          | 2.7  | 45        |
| 32 | Capillary Bridging as a Tool for Assembling Discrete Clusters of Patchy Particles. Journal of the<br>American Chemical Society, 2016, 138, 14948-14953.                    | 13.7 | 53        |
| 33 | Synthesis and Characterization of Biodegradable Lignin Nanoparticles with Tunable Surface<br>Properties. Langmuir, 2016, 32, 6468-6477.                                    | 3.5  | 220       |
| 34 | Magnetophoretic assembly of flexible nanoparticles/lipid microfilaments. Faraday Discussions, 2015, 181, 437-448.                                                          | 3.2  | 21        |
| 35 | Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength.<br>Colloid and Polymer Science, 2015, 293, 3381-3391.                | 2.1  | 136       |
| 36 | Protein Immobilization in Surface-Functionalized SBA-15: Predicting the Uptake Capacity from the Pore<br>Structure. Journal of Physical Chemistry C, 2015, 119, 2438-2446. | 3.1  | 24        |

Bhuvnesh Bharti

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.<br>Langmuir, 2015, 31, 7897-7908.                                             | 3.5  | 89        |
| 38 | Nanocapillarity-mediated magnetic assembly ofÂnanoparticles into ultraflexible filaments<br>andÂreconfigurable networks. Nature Materials, 2015, 14, 1104-1109.               | 27.5 | 89        |
| 39 | Sol–gel chemistry mediated Zn/Al-based complex dispersant for SWCNT in water without foam<br>formation. Carbon, 2015, 94, 518-523.                                            | 10.3 | 18        |
| 40 | An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nature<br>Nanotechnology, 2015, 10, 817-823.                                      | 31.5 | 493       |
| 41 | Bioinspired Reversibly Crossâ€linked Hydrogels Comprising Polypeptide Micelles Exhibit Enhanced<br>Mechanical Properties. Advanced Functional Materials, 2015, 25, 3122-3130. | 14.9 | 59        |
| 42 | Multidirectional, Multicomponent Electric Field Driven Assembly of Complex Colloidal Chains.<br>Zeitschrift Fur Physikalische Chemie, 2015, 229, 1075-1088.                   | 2.8  | 9         |
| 43 | Modulating SWCNT–silica interactions for enhanced dispersibility and hybrid cryogel formation.<br>Colloids and Interface Science Communications, 2014, 3, 13-17.              | 4.1  | 3         |
| 44 | Surfactant Adsorption and Aggregate Structure at Silica Nanoparticles. Springer Theses, 2014, , 47-61.                                                                        | 0.1  | 0         |
| 45 | Bridging interactions of proteins with silica nanoparticles: The influence of pH, ionic strength and protein concentration. Soft Matter, 2014, 10, 718-728.                   | 2.7  | 91        |
| 46 | Analysis of the Field-Assisted Permanent Assembly of Oppositely Charged Particles. Langmuir, 2014, 30,<br>6577-6587.                                                          | 3.5  | 19        |
| 47 | Adsorption, Aggregation and Structure Formation in Systems of Charged Particles. Springer Theses, 2014, , .                                                                   | 0.1  | 4         |
| 48 | Permanent Supracolloidal Biparticle Assembly Triggered by an Electric Field. Springer Theses, 2014, ,<br>131-139.                                                             | 0.1  | 0         |
| 49 | Theory and Modeling. Springer Theses, 2014, , 29-43.                                                                                                                          | 0.1  | 0         |
| 50 | Protein-Specific Effects of Binding to Silica Nanoparticles. Springer Theses, 2014, , 121-128.                                                                                | 0.1  | 1         |
| 51 | Effect of pH and Salinity on Silica–Lysozyme Hetero-Aggregation. Springer Theses, 2014, , 103-119.                                                                            | 0.1  | 0         |
| 52 | Assembling Wormlike Micelles in Tubular Nanopores by Tuning Surfactant-Wall Interactions. Springer<br>Theses, 2014, , 63-78.                                                  | 0.1  | 0         |
| 53 | Field-directed assembly of patchy anisotropic microparticles with defined shape. Soft Matter, 2013, 9, 9219.                                                                  | 2.7  | 66        |
| 54 | Co-Assembly of Oppositely Charged Particles into Linear Clusters and Chains of Controllable Length.<br>Scientific Reports, 2012, 2, 1004.                                     | 3.3  | 41        |

4

BHUVNESH BHARTI

| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Protein-specific Effects of Binding to Silica Nanoparticles. Chemistry Letters, 2012, 41, 1122-1124.                                                        | 1.3  | 6         |
| 56 | Assembling Wormlike Micelles in Tubular Nanopores by Tuning Surfactant–Wall Interactions. Journal of the American Chemical Society, 2012, 134, 14756-14759. | 13.7 | 25        |
| 57 | Surfactant adsorption and aggregate structure at silica nanoparticles: Effects of particle size and surface modification. Soft Matter, 2012, 8, 6573.       | 2.7  | 43        |
| 58 | Correspondence via Electron and Charge Carrier Dynamics of Silver Nanoparticles with Organic Dyes.<br>Science of Advanced Materials, 2012, 4, 78-92.        | 0.7  | 3         |
| 59 | Aggregation of Silica Nanoparticles Directed by Adsorption of Lysozyme. Langmuir, 2011, 27, 9823-9833.                                                      | 3.5  | 176       |