
Michael C Grimm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2120150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic analysis of oral <i>Campylobacter concisus</i> strains identified a potential bacterial molecular marker associated with active Crohn's disease. Emerging Microbes and Infections, 2018, 7, 1-14.	6.5	25
2	The Growth and Protein Expression of Inflammatory Bowel Disease-Associated Campylobacter concisus Is Affected by the Derivatives of the Food Additive Fumaric Acid. Frontiers in Microbiology, 2018, 9, 896.	3.5	5
3	Campylobacter concisus Genomospecies 2 Is Better Adapted to the Human Gastrointestinal Tract as Compared with Campylobacter concisus Genomospecies 1. Frontiers in Physiology, 2017, 8, 543.	2.8	16
4	The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System. Frontiers in Immunology, 2017, 8, 417.	4.8	103
5	Azathioprine, Mercaptopurine, and 5-Aminosalicylic Acid Affect the Growth of IBD-Associated Campylobacter Species and Other Enteric Microbes. Frontiers in Microbiology, 2017, 8, 527.	3.5	37
6	Genome analysis of Campylobacter concisus strains from patients with inflammatory bowel disease and gastroenteritis provides new insights into pathogenicity. Scientific Reports, 2016, 6, 38442.	3.3	31
7	Examination of the effects of Campylobacter concisus zonula occludens toxin on intestinal epithelial cells and macrophages. Gut Pathogens, 2016, 8, 18.	3.4	42
8	Modulation of Interferon Activity-Associated Soluble Molecules by Appendicitis and Appendectomy Limits Colitis–Identification of Novel Anti-Colitic Targets. Journal of Interferon and Cytokine Research, 2015, 35, 108-115.	1.2	10
9	Investigation of the effects of pH and bile on the growth of oral Campylobacter concisus strains isolated from patients with inflammatory bowel disease and controls. Journal of Medical Microbiology, 2015, 64, 438-445.	1.8	12
10	Current trends in cannulation and neuroprotection during surgery of the aortic arch in Europe. European Journal of Cardio-thoracic Surgery, 2015, 47, 917-923.	1.4	135
11	Delineation of genetic relatedness and population structure of oral and enteric Campylobacter concisus strains by analysis of housekeeping genes. Microbiology (United Kingdom), 2015, 161, 1600-1612.	1.8	22
12	Examination of the Anaerobic Growth of <i>Campylobacter concisus</i> Strains. International Journal of Microbiology, 2014, 2014, 1-7.	2.3	32
13	Improving the transition from medical school to internship $\hat{a} \in $ evaluation of a preparation for internship course. BMC Medical Education, 2014, 14, 23.	2.4	34
14	Autophagy Suppression by Appendicitis and Appendectomy Protects Against Colitis. Inflammatory Bowel Diseases, 2014, 20, 847-855.	1.9	23
15	Endothelin and vascular remodelling in colitis pathogenesis—Appendicitis and appendectomy limit colitis by suppressing endothelin pathways. International Journal of Colorectal Disease, 2014, 29, 1321-1328.	2.2	9
16	<i>Campylobacter concisus</i> and inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 1259.	3.3	56
17	CC Chemokine Ligand 20 and Its Cognate Receptor CCR6 in Mucosal T Cell Immunology and Inflammatory Bowel Disease: Odd Couple or Axis of Evil?. Frontiers in Immunology, 2013, 4, 194.	4.8	106
18	Empathy as a Function of Clinical Exposure - Reading Emotion in the Eyes. PLoS ONE, 2013, 8, e65159.	2.5	58

MICHAEL C GRIMM

#	Article	IF	CITATIONS
19	The Prevalence and Polymorphisms of Zonula Occluden Toxin Gene in Multiple Campylobacter concisus Strains Isolated from Saliva of Patients with Inflammatory Bowel Disease and Controls. PLoS ONE, 2013, 8, e75525.	2.5	39
20	The Effects of Oral and Enteric Campylobacter concisus Strains on Expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 Cells. PLoS ONE, 2013, 8, e56888.	2.5	28
21	Successful development of generic capabilities in an undergraduate medical education program. Higher Education Research and Development, 2012, 31, 525-539.	2.9	35
22	Clinical capabilities of graduates of an outcomes-based integrated medical program. BMC Medical Education, 2012, 12, 23.	2.4	24
23	Investigation of the Enteric Pathogenic Potential of Oral Campylobacter concisus Strains Isolated from Patients with Inflammatory Bowel Disease. PLoS ONE, 2012, 7, e38217.	2.5	68
24	Prevalence of Campylobacter Species in Adult Crohn's Disease and the Preferential Colonization Sites of Campylobacter Species in the Human Intestine. PLoS ONE, 2011, 6, e25417.	2.5	108
25	Isolation and Detection of <i>Campylobacter concisus</i> from Saliva of Healthy Individuals and Patients with Inflammatory Bowel Disease. Journal of Clinical Microbiology, 2010, 48, 2965-2967.	3.9	69
26	Pathogenesis of the hyperlipidemia of Gram-negative bacterial sepsis may involve pathomorphological changes in liver sinusoidal endothelial cells. International Journal of Infectious Diseases, 2010, 14, e857-e867.	3.3	27
27	Pseudomonas aeruginosa and the hyperlipidaemia of sepsis. Pathology, 2009, 41, 615-621.	0.6	11
28	New and emerging therapies for inflammatory bowel diseases. Journal of Gastroenterology and Hepatology (Australia), 2009, 24, S69-74.	2.8	9
29	Road most traveled: Gutâ€specific migration signals and leucocyte entry to the intestine. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, 1775-1776.	2.8	2
30	Enhancing Evaluation in an Undergraduate Medical Education Program. Academic Medicine, 2008, 83, 787-793.	1.6	35
31	IL-15 induces mast cell migration via a pertussis toxin-sensitive receptor. European Journal of Immunology, 2005, 35, 2376-2385.	2.9	21
32	Cutting Edge: Vasoactive Intestinal Peptide Acts as a Potent Suppressor of Inflammation In Vivo byTrans-Deactivating Chemokine Receptors. Journal of Immunology, 2003, 171, 4990-4994.	0.8	45
33	Fifty years of gastroenterology in Australia. Journal of Gastroenterology and Hepatology (Australia), 2002, 14, 179-193.	2.8	1
34	Inflammatory bowel disease and inflammatory molecules: Chickens, eggs and therapeutic targets. Journal of Gastroenterology and Hepatology (Australia), 2002, 17, 935-937.	2.8	1
35	A homing selection hypothesis for T-cell trafficking. Trends in Immunology, 2000, 21, 315-317.	7.5	31
36	T20/DP178, an Ectodomain Peptide of Human Immunodeficiency Virus Type 1 gp41, Is an Activator of Human Phagocyte N-Formyl Peptide Receptor. Blood, 1999, 93, 3885-3892.	1.4	71

MICHAEL C GRIMM

#	Article	IF	CITATIONS
37	Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nature Biotechnology, 1999, 17, 253-258.	17.5	278
38	Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor Induce Expression of CXCR4 on Human Endothelial Cells. American Journal of Pathology, 1999, 154, 1125-1135.	3.8	518
39	T20/DP178, an Ectodomain Peptide of Human Immunodeficiency Virus Type 1 gp41, Is an Activator of Human Phagocyte N-Formyl Peptide Receptor. Blood, 1999, 93, 3885-3892.	1.4	28
40	Monocyte Chemotactic Protein-2 Activates CCR5 and Blocks CD4/CCR5-mediated HIV-1 Entry/Replication. Journal of Biological Chemistry, 1998, 273, 4289-4292.	3.4	124
41	Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. Journal of Leukocyte Biology, 1998, 64, 6-13.	3.3	42
42	Inflammatory bowel disease: germs or genes?. Lancet, The, 1996, 347, 1198.	13.7	9
43	Chemokines in Inflammatory Bowel Disease Mucosa: Expression of RANTES, Macrophage Inflammatory Protein (MIP)-11±, MIP-11², and 1³-Interferon-Inducible Protein-10 by Macrophages, Lymphocytes, Endothelial Cells, and Granulomas. Inflammatory Bowel Diseases, 1996, 2, 88-96.	1.9	36
44	Enhanced expression and production of monocyte chemoattractant protein-1 in inflammatory bowel disease mucosa. Journal of Leukocyte Biology, 1996, 59, 804-812.	3.3	140
45	Chemokines in inflammatory bowel disease mucosa: Expression of RANTES, macrophage inflammatory protein (MIP)-11±, MIP-11², and 1³-interferona€"inducible protein-10 by macrophages, lymphocytes, endothelial cells, and grapulomas, Inflammatory Bowel Diseases, 1996, 2, 88-96	1.9	39