
Matthias Schleuning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2119982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards an animal economics spectrum for ecosystem research. Functional Ecology, 2023, 37, 57-72.	3.6	7
2	Variable relationships between trait diversity and avian ecological functions in agroecosystems. Functional Ecology, 2023, 37, 87-98.	3.6	2
3	Traitâ€based inference of ecological network assembly: A conceptual framework and methodological toolbox. Ecological Monographs, 2022, 92, .	5.4	9
4	Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro. Remote Sensing, 2022, 14, 786.	4.0	1
5	Global plantâ€frugivore trait matching is shaped by climate and biogeographic history. Ecology Letters, 2022, 25, 686-696.	6.4	24
6	AVONET: morphological, ecological and geographical data for all birds. Ecology Letters, 2022, 25, 581-597.	6.4	280
7	Cover Image: Volume 25 Number 3, March 2022. Ecology Letters, 2022, 25, .	6.4	0
8	Avian seed dispersal may be insufficient for plants to track future temperature change on tropical mountains. Global Ecology and Biogeography, 2022, 31, 848-860.	5.8	5
9	Associations of bird and bat species richness with temperature and remote sensingâ€based vegetation structure on a tropical mountain. Biotropica, 2022, 54, 135-145.	1.6	2
10	Speciation and population divergence in a mutualistic seed dispersing bird. Communications Biology, 2022, 5, 429.	4.4	1
11	Behavioural and morphological traits influence sexâ€specific floral resource use by hummingbirds. Journal of Animal Ecology, 2022, 91, 2171-2180.	2.8	6
12	The influence of biogeographical and evolutionary histories on morphological traitâ€matching and resource specialization in mutualistic hummingbird–plant networks. Functional Ecology, 2021, 35, 1120-1133.	3.6	31
13	Specialists and generalists fulfil important and complementary functional roles in ecological processes. Functional Ecology, 2021, 35, 1810-1821.	3.6	16
14	Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology and Evolution, 2021, 5, 1582-1593.	7.8	35
15	Abiotic and biotic drivers of functional diversity and functional composition of bird and bat assemblages along a tropical elevation gradient. Diversity and Distributions, 2021, 27, 2344-2356.	4.1	13
16	A research framework for projecting ecosystem change in highly diverse tropical mountain ecosystems. Oecologia, 2021, 195, 589-600.	2.0	12
17	Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot. Scientific Reports, 2021, 11, 24530.	3.3	12
18	Machine learning algorithms to infer traitâ€matching and predict species interactions in ecological networks. Methods in Ecology and Evolution, 2020, 11, 281-293.	5.2	82

#	Article	IF	CITATIONS
19	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
20	Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecologica, 2020, 102, 103500.	1.1	21
21	Communityâ€wide seed dispersal distances peak at low levels of specialisation in sizeâ€structured networks. Oikos, 2020, 129, 1727-1738.	2.7	9
22	Direct and plantâ€mediated effects of climate on bird diversity in tropical mountains. Ecology and Evolution, 2020, 10, 14196-14208.	1.9	5
23	High levels of phenological asynchrony between specialized pollinators and plants with short flowering phases. Ecology, 2020, 101, e03162.	3.2	13
24	Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192873.	2.6	44
25	Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nature Communications, 2020, 11, 1582.	12.8	32
26	Similar composition of functional roles in Andean seedâ€dispersal networks, despite high species and interaction turnover. Ecology, 2020, 101, e03028.	3.2	22
27	Biogeography and anthropogenic impact shape the success of invasive wasps on New Zealand's offshore islands. Diversity and Distributions, 2020, 26, 441-452.	4.1	18
28	Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends in Ecology and Evolution, 2020, 35, 319-328.	8.7	106
29	Biodiversity components mediate the response to forest loss and the effect on ecological processes of plant–frugivore assemblages. Functional Ecology, 2020, 34, 1257-1267.	3.6	13
30	Functional and phylogenetic diversity of bird assemblages are filtered by different biotic factors on tropical mountains. Journal of Biogeography, 2019, 46, 291-303.	3.0	56
31	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
32	Projecting consequences of global warming for the functional diversity of fleshyâ€fruited plants and frugivorous birds along a tropical elevational gradient. Diversity and Distributions, 2019, 25, 1362-1374.	4.1	12
33	Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 2019, 568, 88-92.	27.8	313
34	Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Scientific Reports, 2019, 9, 17708.	3.3	34
35	Direct and indirect effects of plant and frugivore diversity on structural and functional components of fruit removal by birds. Oecologia, 2019, 189, 435-445.	2.0	15
36	Seedâ€dispersal networks are more specialized in the Neotropics than in the Afrotropics. Global Ecology and Biogeography, 2019, 28, 248-261.	5.8	45

#	Article	IF	CITATIONS
37	Functional responses of avian frugivores to variation in fruit resources between natural and fragmented forests. Functional Ecology, 2019, 33, 399-410.	3.6	14
38	Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia, 2019, 189, 863-873.	2.0	16
39	Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography, 2018, 41, 1910-1919.	4.5	71
40	Temporal variation of fungal diversity in a mosaic landscape in Germany. Studies in Mycology, 2018, 89, 95-104.	7.2	23
41	Sex ratio rather than population size affects genetic diversity in <i>Antennaria dioica</i> . Plant Biology, 2018, 20, 789-796.	3.8	18
42	Environment and host identity structure communities of green algal symbionts in lichens. New Phytologist, 2018, 217, 277-289.	7.3	106
43	Seedâ€dispersal networks respond differently to resource effects in open and forest habitats. Oikos, 2018, 127, 847-854.	2.7	11
44	Large mammal diversity matters for wildlife tourism in Southern African Protected Areas: Insights for management. Ecosystem Services, 2018, 31, 481-490.	5.4	28
45	Elevationâ€dependent effects of forest fragmentation on plant–bird interaction networks in the tropical Andes. Ecography, 2018, 41, 1497-1506.	4.5	25
46	Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 2018, 27, 1004-1016.	5.8	211
47	Functional diversity mediates macroecological variation in plant–hummingbird interaction networks. Global Ecology and Biogeography, 2018, 27, 1186-1199.	5.8	43
48	Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 2018, 9, 3177.	12.8	63
49	Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS ONE, 2018, 13, e0196179.	2.5	37
50	Effects of hummingbird morphology on specialization in pollination networks vary with resource availability. Oikos, 2017, 126, 52-60.	2.7	56
51	Functionally specialised birds respond flexibly to seasonal changes in fruit availability. Journal of Animal Ecology, 2017, 86, 800-811.	2.8	42
52	Direct and indirect effects of climate, human disturbance and plant traits on avian functional diversity. Global Ecology and Biogeography, 2017, 26, 963-972.	5.8	50
53	Global patterns of interaction specialization in bird–flower networks. Journal of Biogeography, 2017, 44, 1891-1910.	3.0	68
54	Defaunation effects on plant recruitment depend on size matching and size trade-offs in seed-dispersal networks. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162664.	2.6	46

#	Article	IF	CITATIONS
55	Mismatches between supply and demand in wildlife tourism: Insights for assessing cultural ecosystem services. Ecological Indicators, 2017, 78, 282-291.	6.3	31
56	Positive relationship between fruit removal by animals and seedling recruitment in a tropical forest. Basic and Applied Ecology, 2017, 20, 31-39.	2.7	13
5 7	Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia. Acta Oecologica, 2017, 85, 85-92.	1.1	3
58	Synergistic effects of climate and land use on avian betaâ€diversity. Diversity and Distributions, 2017, 23, 1246-1255.	4.1	27
59	Opposed latitudinal patterns of networkâ€derived and dietary specialization in avian plant–frugivore interaction systems. Ecography, 2017, 40, 1395-1401.	4.5	111
60	Sugar landscapes and pollinatorâ€mediated interactions in plant communities. Ecography, 2017, 40, 1129-1138.	4.5	41
61	Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos, 2017, 126, 823-832.	2.7	59
62	Coexistence of plant species in a biodiversity hotspot is stabilized by competition but not by seed predation. Oikos, 2017, 126, .	2.7	19
63	Phylogenetic and Functional Diversity of Fleshy-Fruited Plants Are Positively Associated with Seedling Diversity in a Tropical Montane Forest. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	5
64	The importance of vegetation density for tourists' wildlife viewing experience and satisfaction in African savannah ecosystems. PLoS ONE, 2017, 12, e0185793.	2.5	13
65	Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biological Conservation, 2016, 201, 60-68.	4.1	42
66	Responses of nectarâ€feeding birds to floral resources at multiple spatial scales. Ecography, 2016, 39, 619-629.	4.5	39
67	Changes in abundances of forest understorey birds on Africa's highest mountain suggest subtle effects of climate change. Diversity and Distributions, 2016, 22, 288-299.	4.1	33
68	Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports, 2016, 6, 29839.	3.3	98
69	Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 2016, 7, 13736.	12.8	229
70	Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 2016, 7, 13965.	12.8	180
71	A bird pollinator shows positive frequency dependence and constancy of species choice in natural plant communities. Ecology, 2016, 97, 3110-3118.	3.2	13
72	Factors limiting montane forest regeneration in bracken-dominated habitats in the tropics. Forest Ecology and Management, 2016, 381, 168-176.	3.2	12

#	Article	IF	CITATIONS
73	The integration of alien plants in mutualistic plant–hummingbird networks across the Americas: the importance of species traits and insularity. Diversity and Distributions, 2016, 22, 672-681.	4.1	47
74	Frugivore diversity increases frugivory rates along a large elevational gradient. Oikos, 2016, 125, 245-253.	2.7	5
75	Morphology predicts species' functional roles and their degree of specialization in plant–frugivore interactions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152444.	2.6	164
76	High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152512.	2.6	32
77	Elevation, Topography, and Edge Effects Drive Functional Composition of Woody Plant Species in Tropical Montane Forests. Biotropica, 2015, 47, 449-458.	1.6	23
78	Deforested habitats lack seeds of lateâ€successional and largeâ€seeded plant species in tropical montane forests. Applied Vegetation Science, 2015, 18, 603-612.	1.9	13
79	The macroecology of phylogenetically structured hummingbird–plant networks. Global Ecology and Biogeography, 2015, 24, 1212-1224.	5.8	100
80	Reward quality predicts effects of bird-pollinators on the reproduction of African Protea shrubs. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 209-217.	2.7	26
81	Functional structure and specialization in three tropical plant–hummingbird interaction networks across an elevational gradient in Costa Rica. Ecography, 2015, 38, 1119-1128.	4.5	71
82	The indirect effects of habitat disturbance on the bird communities in a tropical African forest. Biodiversity and Conservation, 2015, 24, 3083-3107.	2.6	11
83	Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of traitâ€based concepts to plant–animal interactions. Ecography, 2015, 38, 380-392.	4.5	235
84	Bracken fern facilitates tree seedling recruitment in tropical fire-degraded habitats. Forest Ecology and Management, 2015, 337, 135-143.	3.2	26
85	Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant–pollinator interactions. Journal of Animal Ecology, 2015, 84, 655-664.	2.8	55
86	Multispecies interactions across trophic levels at macroscales: retrospective and future directions. Ecography, 2015, 38, 346-357.	4.5	65
87	Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133148.	2.6	93
88	Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography, 2014, 37, 1047-1055.	4.5	124
89	Secondary dispersal by ants promotes forest regeneration after deforestation. Journal of Ecology, 2014, 102, 659-666.	4.0	45
90	Ecological, historical and evolutionary determinants of modularity in weighted seedâ€dispersal networks. Ecology Letters, 2014, 17, 454-463.	6.4	150

#	Article	IF	CITATIONS
91	Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecology and Biogeography, 2014, 23, 541-549.	5.8	143
92	At a loss for birds: insularity increases asymmetry in seedâ€dispersal networks. Global Ecology and Biogeography, 2014, 23, 385-394.	5.8	52
93	Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. Journal of Vegetation Science, 2014, 25, 724-733.	2.2	48
94	Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks. Oecologia, 2014, 176, 837-848.	2.0	48
95	Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Global Ecology and Biogeography, 2014, 23, 1085-1093.	5.8	129
96	Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology, 2014, 95, 3325-3334.	3.2	151
97	Birds protected by national legislation show improved population trends in Eastern Europe. Biological Conservation, 2014, 172, 109-116.	4.1	34
98	Bioclimatic regions influence genetic structure of four Jordanian <i>Stipa</i> species. Plant Biology, 2013, 15, 882-891.	3.8	19
99	Seasonal fluctuations of resource abundance and avian feeding guilds across forest–farmland boundaries in tropical Africa. Oikos, 2013, 122, 524-532.	2.7	46
100	Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities. Oecologia, 2013, 171, 473-486.	2.0	23
101	How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist, 2013, 198, 617-629.	7.3	57
102	Forest recovery of areas deforested by fire increases with elevation in the tropical Andes. Forest Ecology and Management, 2013, 295, 69-76.	3.2	32
103	Negative Effects of Conspecific Floral Density on Fruit Set of Two Neotropical Understory Plants. Biotropica, 2013, 45, 325-332.	1.6	2
104	Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology, 2013, 94, 1296-1306.	3.2	60
105	Historical climateâ€change influences modularity and nestedness of pollination networks. Ecography, 2013, 36, 1331-1340.	4.5	116
106	Effects of disturbance and altitude on soil seed banks of tropical montane forests. Journal of Tropical Ecology, 2013, 29, 523-529.	1.1	12
107	Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests. Diversity, 2013, 5, 1-14.	1.7	17
108	Forest fragmentation and edge effects on the genetic structure ofClusia sphaerocarpaandC. lechleri(Clusiaceae) in tropical montane forests. Journal of Tropical Ecology, 2013, 29, 321-329.	1.1	14

#	Article	IF	CITATIONS
109	Metaâ€Analysis of the Effects of Human Disturbance on Seed Dispersal by Animals. Conservation Biology, 2012, 26, 1072-1081.	4.7	213
110	Short seedâ€dispersal distances and low seedling recruitment in farmland populations of birdâ€dispersed cherry trees. Journal of Ecology, 2012, 100, 1349-1358.	4.0	31
111	Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 2012, 22, 1925-1931.	3.9	290
112	High Bird Species Diversity in Structurally Heterogeneous Farmland in Western Kenya. Biotropica, 2012, 44, 801-809.	1.6	62
113	Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos, 2012, 121, 1553-1566.	2.7	85
114	Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia, 2012, 168, 425-437.	2.0	37
115	Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology, 2011, 92, 26-36.	3.2	144
116	River dynamics shape clonal diversity and genetic structure of an Amazonian understorey herb. Journal of Ecology, 2011, 99, 373-382.	4.0	12
117	Effects of Inbreeding, Outbreeding, and Supplemental Pollen on the Reproduction of a Hummingbird-pollinated Clonal Amazonian Herb. Biotropica, 2011, 43, 183-191.	1.6	9
118	Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest. PLoS ONE, 2011, 6, e27785.	2.5	64
119	Negative effects of habitat degradation and fragmentation on the declining grassland plant Trifolium montanum. Basic and Applied Ecology, 2009, 10, 61-69.	2.7	44
120	Experimental Assessment of Factors Limiting Seedling Recruitment of an Amazonian Understory Herb. Biotropica, 2009, 41, 57-65.	1.6	6
121	Habitat Change and Plant Demography: Assessing the Extinction Risk of a Formerly Common Grassland Perennial. Conservation Biology, 2009, 23, 174-183.	4.7	29
122	Flooding and canopy dynamics shape the demography of a clonal Amazon understorey herb. Journal of Ecology, 2008, 96, 1045-1055.	4.0	33
123	Independent variation of avian sensitivity to climate change and traitâ€based adaptive capacity along a tropical elevational gradient. Diversity and Distributions, 0, , .	4.1	1