
## Maria João M F João M F Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2119159/publications.pdf Version: 2024-02-01



## Maria João M F João M F

1

| #  | Article                                                                                                                                                                                                               | IF                  | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| 1  | A glimpse at an early stage of microbe domestication revealed in the variable genome of<br><i>Torulaspora delbrueckii</i> , an emergent industrial yeast. Molecular Ecology, 2023, 32, 2396-2412.                     | 3.9                 | 12           |
| 2  | Whole-Genome Sequencing and Annotation of the Yeast Clavispora santaluciae Reveals Important<br>Insights about Its Adaptation to the Vineyard Environment. Journal of Fungi (Basel, Switzerland), 2022,<br>8, 52.     | 3.5                 | 2            |
| 3  | KRAS as a Modulator of the Inflammatory Tumor Microenvironment: Therapeutic Implications. Cells, 2022, 11, 398.                                                                                                       | 4.1                 | 23           |
| 4  | Saccharomyces cerevisiae Cells Lacking the Zinc Vacuolar Transporter Zrt3 Display Improved Ethanol<br>Productivity in Lignocellulosic Hydrolysates. Journal of Fungi (Basel, Switzerland), 2022, 8, 78.               | 3.5                 | 3            |
| 5  | Acetic acid triggers cytochrome c release in yeast heterologously expressing human Bax. Apoptosis:<br>an International Journal on Programmed Cell Death, 2022, 27, 368-381.                                           | 4.9                 | 5            |
| 6  | Squaraine Dyes Derived from Indolenine and Benzo[ <i>e</i> ]indole as Potential Fluorescent Probes for HSA Detection and Antifungal Agents. Photochemistry and Photobiology, 2022, 98, 1402-1417.                     | 2.5                 | 7            |
| 7  | Torulaspora delbrueckii Phenotypic and Metabolic Profiling towards Its Biotechnological<br>Exploitation. Journal of Fungi (Basel, Switzerland), 2022, 8, 569.                                                         | 3.5                 | 9            |
| 8  | Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic<br>Implications. Cells, 2022, 11, 2183.                                                                                   | 4.1                 | 18           |
| 9  | Improvement of Torulaspora delbrueckii Genome Annotation: Towards the Exploitation of Genomic<br>Features of a Biotechnologically Relevant Yeast. Journal of Fungi (Basel, Switzerland), 2021, 7, 287.                | 3.5                 | 10           |
| 10 | Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform. FEMS Yeast Research, 2021, 21, .                                                                              | 2.3                 | 13           |
| 11 | Regulation of Cell Death Induced by Acetic Acid in Yeasts. Frontiers in Cell and Developmental Biology, 2021, 9, 642375.                                                                                              | 3.7                 | 27           |
| 12 | The Plasma Membrane at the Cornerstone Between Flexibility and Adaptability: Implications for Saccharomyces cerevisiae as a Cell Factory. Frontiers in Microbiology, 2021, 12, 715891.                                | 3.5                 | 7            |
| 13 | Development of an automated yeast-based spectrophotometric method for toxicity screening:<br>Application to ionic liquids, GUMBOS, and deep eutectic solvents. Chemosphere, 2021, 277, 130227.                        | 8.2                 | 2            |
| 14 | Biotechnological Importance of TorulasporaÂdelbrueckii: From the Obscurity to the Spotlight. Journal of Fungi (Basel, Switzerland), 2021, 7, 712.                                                                     | 3.5                 | 22           |
| 15 | N-(5-Amino-9H-benzo[a]phenoxazin-9-ylidene)propan-1-aminium chlorides as antifungal agents and NIR<br>fluorescent probes. New Journal of Chemistry, 2021, 45, 7808-7815.                                              | 2.8                 | 4            |
| 16 | Novel Nile Blue Analogue Stains Yeast Vacuolar Membrane, Endoplasmic Reticulum, and Lipid Droplets,<br>Inducing Cell Death through Vacuole Membrane Permeabilization. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Ov | ver <b>bos</b> k 10 | Tf250 137 Td |
| 17 | New NIR dyes based on quinolizino[1,9-hi]phenoxazin-6-iminium chlorides: synthesis, photophysics and antifungal activity. Dyes and Pigments, 2020, 173, 107870.                                                       | 3.7                 | 3            |

18Lactate Induces Cisplatin Resistance in S. cerevisiae through a Rad4p-Dependent Process. Oxidative<br/>Medicine and Cellular Longevity, 2020, 2020, 1-8.4.0

Maria João M F João M F

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Benzo[a]phenoxazinium chlorides: Synthesis, antifungal activity, in silico studies and evaluation as fluorescent probes. Bioorganic Chemistry, 2020, 98, 103730.                                  | 4.1 | 8         |
| 20 | Hexose transport in Torulaspora delbrueckii: identification of Igt1, a new dual-affinity transporter.<br>FEMS Yeast Research, 2020, 20, .                                                         | 2.3 | 9         |
| 21 | Evaluation of Fluorescent Staining Capacity of Two New Nile Blue Analogues. Chemistry Proceedings, 2020, 3, .                                                                                     | 0.1 | Ο         |
| 22 | Two Symmetrical Squarylium Cyanine Dyes: Synthesis, Photophysics and Antifungal Activity in Saccharomyces cerevisiae. Chemistry Proceedings, 2020, 3, .                                           | 0.1 | 0         |
| 23 | Contacts in Death: The Role of the ER–Mitochondria Axis in Acetic Acid-Induced Apoptosis in Yeast.<br>Journal of Molecular Biology, 2019, 431, 273-288.                                           | 4.2 | 12        |
| 24 | Proteasome inhibition prevents cell death induced by the chemotherapeutic agent cisplatin downstream of DNA damage. DNA Repair, 2019, 73, 28-33.                                                  | 2.8 | 11        |
| 25 | Phenolic Imidazole Derivatives with Dual Antioxidant/Antifungal Activity: Synthesis and Structure-Activity Relationship. Medicinal Chemistry, 2019, 15, 341-351.                                  | 1.5 | 9         |
| 26 | Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.                                                                                                   | 3.2 | 158       |
| 27 | New Nitrogen Compounds Coupled to Phenolic Units with Antioxidant and Antifungal Activities:<br>Synthesis and Structure–Activity Relationship. Molecules, 2018, 23, 2530.                         | 3.8 | 9         |
| 28 | The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells, 2018, 7, 14.                                                           | 4.1 | 33        |
| 29 | New Nile Blue Derivatives as NIR Fluorescent Probes and Antifungal Agents. Proceedings (mdpi), 2018,<br>9, .                                                                                      | 0.2 | 0         |
| 30 | Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. BMC Genomics, 2017, 18, 455.                        | 2.8 | 33        |
| 31 | Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast <i>Saccharomyces cerevisiae</i> . Oncotarget, 2016, 7, 23033-23042. | 1.8 | 11        |
| 32 | Dietary Restriction and Nutrient Balance in Aging. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.                                                                                   | 4.0 | 41        |
| 33 | Regulation of Bax/mitochondria interaction by AKT. FEBS Letters, 2016, 590, 13-21.                                                                                                                | 2.8 | 37        |
| 34 | Synthesis and photophysical studies of new benzo[a]phenoxazinium chlorides as potential antifungal agents. Tetrahedron Letters, 2016, 57, 3936-3941.                                              | 1.4 | 12        |
| 35 | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).<br>Autophagy, 2016, 12, 1-222.                                                                        | 9.1 | 4,701     |
| 36 | VDAC regulates AAC-mediated apoptosis and cytochrome c release in yeast. Microbial Cell, 2016, 3, 500-510.                                                                                        | 3.2 | 20        |

MARIA JOãO M F JOãO M F

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium. Oncotarget, 2015, 6, 6511-6523.                                                                                                          | 1.8 | 20        |
| 38 | Colorectal cancer-related mutant <i>KRAS</i> alleles function as positive regulators of autophagy.<br>Oncotarget, 2015, 6, 30787-30802.                                                                                                           | 1.8 | 39        |
| 39 | Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae.<br>Microbial Cell, 2014, 1, 303-314.                                                                                                            | 3.2 | 21        |
| 40 | <i>Mentha piperita</i> essential oil induces apoptosis in yeast associated with both cytosolic and mitochondrial ROS-mediated damage. FEMS Yeast Research, 2014, 14, n/a-n/a.                                                                     | 2.3 | 39        |
| 41 | The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids.<br>FEMS Yeast Research, 2014, 14, 160-178.                                                                                                   | 2.3 | 38        |
| 42 | The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids.<br>FEMS Yeast Research, 2014, 14, 995-995.                                                                                                   | 2.3 | 0         |
| 43 | The Genome Sequence of the Highly Acetic Acid-Tolerant Zygosaccharomyces bailii-Derived<br>Interspecies Hybrid Strain ISA1307, Isolated From a Sparkling Wine Plant. DNA Research, 2014, 21, 299-313.                                             | 3.4 | 62        |
| 44 | Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics, 2013, 14, 838.                                                       | 2.8 | 50        |
| 45 | The protective role of yeast Cathepsin D in acetic acidâ€induced apoptosis depends on ANT (Aac2p) but<br>not on the voltageâ€dependent channel (Por1p). FEBS Letters, 2013, 587, 200-205.                                                         | 2.8 | 21        |
| 46 | Ammonium-Dependent Shortening of CLS in Yeast Cells Starved for Essential Amino Acids Is<br>Determined by the Specific Amino Acid Deprived, through Different Signaling Pathways. Oxidative<br>Medicine and Cellular Longevity, 2013, 2013, 1-10. | 4.0 | 14        |
| 47 | C2-Phytoceramide Perturbs Lipid Rafts and Cell Integrity in Saccharomyces cerevisiae in a<br>Sterol-Dependent Manner. PLoS ONE, 2013, 8, e74240.                                                                                                  | 2.5 | 9         |
| 48 | Ammonium Is Toxic for Aging Yeast Cells, Inducing Death and Shortening of the Chronological<br>Lifespan. PLoS ONE, 2012, 7, e37090.                                                                                                               | 2.5 | 42        |
| 49 | The Fate of Acetic Acid during Clucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii.<br>PLoS ONE, 2012, 7, e52402.                                                                                                                | 2.5 | 33        |
| 50 | Growth Culture Conditions and Nutrient Signaling Modulating Yeast Chronological Longevity.<br>Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-10.                                                                                        | 4.0 | 14        |
| 51 | Modulation of Mitochondrial Outer Membrane Permeabilization and Apoptosis by Ceramide Metabolism. PLoS ONE, 2012, 7, e48571.                                                                                                                      | 2.5 | 47        |
| 52 | Vacuole–mitochondrial cross-talk during apoptosis in yeast: a model for understanding<br>lysosome–mitochondria-mediated apoptosis in mammals. Biochemical Society Transactions, 2011, 39,<br>1533-1537.                                           | 3.4 | 16        |
| 53 | Vacuole–mitochondrial cross-talk during apoptosis in yeast: a model for understanding<br>lysosome–mitochondria-mediated apoptosis in mammals. Biochemical Society Transactions, 2011, 39,<br>1901-1901.                                           | 3.4 | 0         |
| 54 | The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Applied Microbiology and Biotechnology, 2011, 89, 271-280.                                           | 3.6 | 79        |

Maria João M F João M F

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Molecular Microbiology, 2010, 76, 1398-1410.                                                                             | 2.5 | 75        |
| 56 | Small heat-shock protein Hsp12 contributes to yeast tolerance to freezing stress. Microbiology (United Kingdom), 2009, 155, 2021-2028.                                                                                               | 1.8 | 52        |
| 57 | Improved gene disruption method for <i>Torulaspora delbrueckii</i> . FEMS Yeast Research, 2009, 9, 158-160.                                                                                                                          | 2.3 | 9         |
| 58 | Synthesis of naphtho[2,3-a]phenoxazinium chlorides: Structure–activity relationships of these<br>heterocycles and benzo[a]phenoxazinium chlorides as new antimicrobials. Bioorganic and Medicinal<br>Chemistry, 2008, 16, 3274-3282. | 3.0 | 19        |
| 59 | Mitochondria-dependent apoptosis in yeast. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1286-1302.                                                                                                           | 4.1 | 120       |
| 60 | Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations.<br>Microbiology (United Kingdom), 2008, 154, 422-430.                                                                                       | 1.8 | 64        |
| 61 | Sugar utilization patterns and respiro-fermentative metabolism in the baker's yeast Torulaspora delbrueckii. Microbiology (United Kingdom), 2007, 153, 898-904.                                                                      | 1.8 | 55        |
| 62 | Synthesis, characterisation and antimicrobial activity of new benzo[a]phenoxazine based fluorophores. Tetrahedron Letters, 2007, 48, 8347-8352.                                                                                      | 1.4 | 28        |
| 63 | ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome <i>c</i> release in yeast apoptosis. Molecular Microbiology, 2007, 66, 571-582.                                                         | 2.5 | 128       |
| 64 | YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity. FEBS Letters, 2006, 580, 6880-6884.                                                                | 2.8 | 71        |
| 65 | Isolation and characterization of theLGT1gene encoding a low-affinity glucose transporter fromTorulaspora delbrueckii. Yeast, 2005, 22, 165-175.                                                                                     | 1.7 | 15        |
| 66 | Cloning and characterization of the gene encoding a high-affinity maltose transporter from. FEMS<br>Yeast Research, 2004, 4, 467-476.                                                                                                | 2.3 | 16        |
| 67 | Freeze tolerance of the yeastTorulaspora delbrueckii: cellular and biochemical basis. FEMS<br>Microbiology Letters, 2004, 240, 7-14.                                                                                                 | 1.8 | 40        |
| 68 | Isolation of an acetyl-CoA synthetase gene(ZbACS2) fromZygosaccharomyces bailii. Yeast, 2004, 21,<br>325-331.                                                                                                                        | 1.7 | 13        |
| 69 | The Spoilage Yeast Zygosaccharomyces bailii Forms Mitotic Spores: a Screening Method for<br>Haploidization. Applied and Environmental Microbiology, 2003, 69, 649-653.                                                               | 3.1 | 25        |
| 70 | Activity of Essential Oils from Mediterranean Lamiaceae Species against Food Spoilage Yeasts. Journal of Food Protection, 2003, 66, 625-632.                                                                                         | 1.7 | 46        |
| 71 | Zygosaccharomyces bailii: A Yeast With a Peculiar Pattern for the Regulation of Acetic Acid<br>Metabolism in the Presence of Glucose. , 2003, , 409-416.                                                                             |     | 0         |
| 72 | Construction of a genomic library of the food spoilage yeast and isolation of the ?-isopropylmalate dehydrogenase gene (). FEMS Yeast Research, 2001, 1, 67-71.                                                                      | 2.3 | 0         |

## MARIA JOÃEO M F JOÃEO M F

| #  | Article                                                                                                                                                                                                             | IF      | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 73 | Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid.<br>Microbiology (United Kingdom), 2001, 147, 2409-2415.                                                             | 1.8     | 467       |
| 74 | Rapid detection of efflux pumps and their relation with drug resistance in yeast cells. , 2000, 39, 26-35.                                                                                                          |         | 25        |
| 75 | Yeasts as a model for assessing the toxicity of the fungicides Penconazol, Cymoxanil and Dichlofluanid. Chemosphere, 2000, 41, 1637-1642.                                                                           | 8.2     | 44        |
| 76 | Cell Cycle Analysis of Yeasts. Current Protocols in Cytometry, 2000, 13, Unit 11.13.                                                                                                                                | 3.7     | 23        |
| 77 | Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology (United Kingdom), 1998, 144, 665-670.                | 1.8     | 89        |
| 78 | Transport of acetic acid in Zygosaccharomyces bailii: effects of ethanol and their implications on the resistance of the yeast to acidic environments. Applied and Environmental Microbiology, 1996, 62, 3152-3157. | 3.1     | 82        |
| 79 | Effects of ethanol and acetic acid on the transport of malic acid and glucose in the yeast<br>Schizosaccharomyces pombe: implications in wine deacidification. FEMS Microbiology Letters, 1995,<br>126, 197-202.    | 1.8     | 1         |
| 80 | Must deacidification with an induced flocculant yeast strain of Schizosaccharomyces pombe. Applied<br>Microbiology and Biotechnology, 1993, 39, 189.                                                                | 3.6     | 10        |
| 81 | Transport of malic acid in the yeastSchizosaccharomyces pombe: Evidence for proton-dicarboxylate symport. Yeast, 1992, 8, 1025-1031.                                                                                | 1.7     | 58        |
| 82 | Differences in the flocculation mechanism ofKluyveromyces marxianus andSaccharomyces cerevisiae.<br>Biotechnology Letters, 1992, 14, 213-218.                                                                       | 2.2     | 15        |
| 83 | The Emerging Role of the Yeast Torulaspora delbrueckii in Bread and Wine Production: Using Genetic<br>Manipulation to Study Molecular Basis of Physiological Responses. , 0, , .                                    |         | 12        |
| 84 | <strong>Benzo[</strong> <em><strong>a</strong></em> <strong>]phenox</strong>                                                                                                                                        | azinium | 0         |

&It;strong>Benzo[&It;/strong>&It;em>&It;strong>a&It;/strong>&It;/em>&It;strong>]phenoxazinium chlorides functionalized with chloride atoms and/or ester groups&It;/strong>. , 0, , .