
Margarita Poza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Horizontal Transfer of the OXA-24 Carbapenemase Gene via Outer Membrane Vesicles: a New Mechanism of Dissemination of Carbapenem Resistance Genes in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2011, 55, 3084-3090.	3.2	292
2	Whole Transcriptome Analysis of Acinetobacter baumannii Assessed by RNA-Sequencing Reveals Different mRNA Expression Profiles in Biofilm Compared to Planktonic Cells. PLoS ONE, 2013, 8, e72968.	2.5	127
3	Proteomic and Functional Analyses Reveal a Unique Lifestyle for <i>Acinetobacter baumannii</i> Biofilms and a Key Role for Histidine Metabolism. Journal of Proteome Research, 2011, 10, 3399-3417.	3.7	126
4	OXA-24 Carbapenemase Gene Flanked by XerC/XerD-Like Recombination Sites in Different Plasmids from Different <i>Acinetobacter</i> Species Isolated during a Nosocomial Outbreak. Antimicrobial Agents and Chemotherapy, 2010, 54, 2724-2727.	3.2	118
5	Involvement of the AcrAB-TolC Efflux Pump in the Resistance, Fitness, and Virulence of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 2012, 56, 2084-2090.	3.2	114
6	A rapid and simple method for constructing stable mutants of Acinetobacter baumannii. BMC Microbiology, 2010, 10, 279.	3.3	88
7	The FhaB/FhaC two-partner secretion system is involved in adhesion of <i>Acinetobacter baumannii</i> AbH12O-A2 strain. Virulence, 2017, 8, 959-974.	4.4	72
8	Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 59-64.	1.7	65
9	Effect of Transcriptional Activators SoxS, RobA, and RamA on Expression of Multidrug Efflux Pump AcrAB-TolC in Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 2012, 56, 6256-6266.	3.2	63
10	Cloning, Nucleotide Sequencing, and Analysis of the AcrAB-TolC Efflux Pump of <i>Enterobacter cloacae</i> and Determination of Its Involvement in Antibiotic Resistance in a Clinical Isolate. Antimicrobial Agents and Chemotherapy, 2007, 51, 3247-3253.	3.2	54
11	Multidrug-Resistant <i>Acinetobacter baumannii</i> Harboring OXA-24 Carbapenemase, Spain. Emerging Infectious Diseases, 2011, 17, 1064-1067.	4.3	53
12	Exploring Bacterial Diversity in Hospital Environments by GS-FLX Titanium Pyrosequencing. PLoS ONE, 2012, 7, e44105.	2.5	52
13	Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing <i>Acinetobacter baumannii</i> strain on biofilm formation and attachment to eukaryotic cells. Virulence, 2016, 7, 443-455.	4.4	52
14	Emergence in Spain of a Multidrug-Resistant Enterobacter cloacae Clinical Isolate Producing SFO-1 Extended-Spectrum β-Lactamase. Journal of Clinical Microbiology, 2011, 49, 822-828.	3.9	48
15	Making Waves: Collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making. Water Research, 2021, 199, 117167.	11.3	48
16	Expression of OXA-Type and SFO-1 Î ² -Lactamases Induces Changes in Peptidoglycan Composition and Affects Bacterial Fitness. Antimicrobial Agents and Chemotherapy, 2012, 56, 1877-1884.	3.2	45
17	Quantitative proteomic analysis of host—pathogen interactions: a study of Acinetobacter baumannii responses to host airways. BMC Genomics, 2015, 16, 422.	2.8	42
18	Modeling the number of people infected with SARS-COV-2 from wastewater viral load in Northwest Spain. Science of the Total Environment, 2022, 811, 152334.	8.0	42

Margarita Poza

#	Article	IF	CITATIONS
19	Cloning and Expression of Buffalo Active Chymosin in Pichia pastoris. Journal of Agricultural and Food Chemistry, 2008, 56, 10606-10610.	5.2	41
20	Contribution of the A. baumannii A1S_0114 Gene to the Interaction with Eukaryotic Cells and Virulence. Frontiers in Cellular and Infection Microbiology, 2017, 7, 108.	3.9	41
21	Nosocomial Outbreak of a Multiresistant <i>Acinetobacter baumannii</i> Expressing OXA-23 Carbapenemase in Spain. Microbial Drug Resistance, 2014, 20, 259-263.	2.0	40
22	Quorum Sensing as a Target for Controlling Surface Associated Motility and Biofilm Formation in Acinetobacter baumannii ATCC® 17978TM. Frontiers in Microbiology, 2020, 11, 565548.	3.5	37
23	Analysis of Canthaxanthin and Related Pigments fromGordonia jacobaeaMutants. Journal of Agricultural and Food Chemistry, 2001, 49, 1200-1202.	5.2	36
24	Multidrug-Resistant <i>Acinetobacter baumannii</i> Harboring OXA-24 Carbapenemase, Spain. Emerging Infectious Diseases, 2011, 17, 1064-1067.	4.3	33
25	Pneumonia infection in mice reveals the involvement of the feoA gene in the pathogenesis of Acinetobacter baumannii. Virulence, 2018, 9, 496-509.	4.4	33
26	Identification of a DNA-Damage-Inducible Regulon in Acinetobacter baumannii. Journal of Bacteriology, 2013, 195, 5577-5582.	2.2	30
27	Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-Â-lactamases. Journal of Antimicrobial Chemotherapy, 2010, 65, 1950-1954.	3.0	29
28	Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	29
29	LN-1-255, a penicillanic acid sulfone able to inhibit the class D carbapenemase OXA-48. Journal of Antimicrobial Chemotherapy, 2016, 71, 2171-2180.	3.0	27
30	Kpi, a chaperone-usher pili system associated with the worldwide-disseminated high-risk clone <i>Klebsiella pneumoniae</i> ST-15. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17249-17259.	7.1	23
31	Antisense inhibition of lpxB gene expression in Acinetobacter baumannii by peptide–PNA conjugates and synergy with colistin. Journal of Antimicrobial Chemotherapy, 2020, 75, 51-59.	3.0	22
32	Complete Genome Sequence of the Multiresistant Acinetobacter baumannii Strain AbH12O-A2, Isolated during a Large Outbreak in Spain. Genome Announcements, 2014, 2, .	0.8	19
33	Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978. PLoS ONE, 2017, 12, e0182084.	2.5	19
34	Global Transcriptomic Analysis During Murine Pneumonia Infection Reveals New Virulence Factors in <i>Acinetobacter baumannii</i> . Journal of Infectious Diseases, 2021, 223, 1356-1366.	4.0	14
35	In-Depth Analysis of the Role of the Acinetobactin Cluster in the Virulence of Acinetobacter baumannii. Frontiers in Microbiology, 2021, 12, 752070.	3.5	13
36	Involvement of HisF in the Persistence of Acinetobacter baumannii During a Pneumonia Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 310.	3.9	11

#	Article	IF	CITATIONS
37	Syzygium aromaticum (clove) and Thymus zygis (thyme) essential oils increase susceptibility to colistin in the nosocomial pathogens Acinetobacter baumannii and Klebsiella pneumoniae. Biomedicine and Pharmacotherapy, 2020, 130, 110606.	5.6	11
38	Therapeutic Efficacy of LN-1-255 in Combination with Imipenem in Severe Infection Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
39	Draft Genome Sequence of the Biofilm-Hyperproducing Acinetobacter baumannii Clinical Strain MAR002. Genome Announcements, 2015, 3, .	0.8	6
40	Synergy between Colistin and the Signal Peptidase Inhibitor MD3 Is Dependent on the Mechanism of Colistin Resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2016, 60, 4375-4379.	3.2	6