Thomas Kjeldsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	North Atlantic air pressure and temperature conditions associated with heavy rainfall in Great Britain. International Journal of Climatology, 2022, 42, 3190-3207.	1.5	6
2	Video-Based Convolutional Neural Networks Forecasting for Rainfall Forecasting. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	1
3	Spatiotemporal urban water profiling for the assessment of environmental and public exposure to antimicrobials (antibiotics, antifungals, and antivirals) in the Eerste River Catchment, South Africa. Environment International, 2022, 164, 107227.	4.8	10
4	Parametrisation of change-permitting extreme value models and its impact on the description of change. Stochastic Environmental Research and Risk Assessment, 2021, 35, 307-324.	1.9	15
5	Assessment of trends in hydrological extremes using regional magnification factors. Advances in Water Resources, 2021, 149, 103852.	1.7	2
6	Stationary vs non-stationary modelling of flood frequency distribution across northwest England. Hydrological Sciences Journal, 2021, 66, 729-744.	1.2	23
7	Reconstructing the peak flow of historical flood events using a hydraulic model: The city of Bath, United Kingdom. Journal of Flood Risk Management, 2021, 14, e12719.	1.6	4
8	Identifying the origins of extreme rainfall using storm track classification. Journal of Hydroinformatics, 2020, 22, 296-309.	1.1	5
9	Estimating the probable maximum flood in UK catchments using the ReFH model. Dams and Reservoirs, 2020, 30, 85-90.	0.1	1
10	Operational Comparison of Rainfall-Runoff Models through Hypothesis Testing. Journal of Hydrologic Engineering - ASCE, 2020, 25, 04020005.	0.8	8
11	Probability Distributions for a Quantile Mapping Technique for a Bias Correction of Precipitation Data: A Case Study to Precipitation Data Under Climate Change. Water (Switzerland), 2019, 11, 1475.	1.2	53
12	Areal Models for Spatially Coherent Trend Detection: TheÂCase of British Peak River Flows. Geophysical Research Letters, 2019, 46, 13054-13061.	1.5	9
13	Changing climate both increases and decreases European river floods. Nature, 2019, 573, 108-111.	13.7	639
14	Infiltration capacity of cracked pavements. Water Management, 2019, 172, 291-300.	0.4	3
15	Assessing the element of surprise of recordâ€breaking flood events. Journal of Flood Risk Management, 2018, 11, .	1.6	10
16	Mixture Gumbel models for extreme series including infrequent phenomena. Hydrological Sciences Journal, 2018, 63, 1927-1940.	1.2	11
17	Regionalisation of a PDM Model for Catchment Runoff in a Mountainous Region of Korea. KSCE Journal of Civil Engineering, 2018, 22, 4699-4709.	0.9	2
18	During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient. Journal of Hydrology, 2017, 545, 463-477.	2.3	25

THOMAS KJELDSEN

#	Article	IF	CITATIONS
19	A bivariate trend analysis to investigate the effect of increasing urbanisation on flood characteristics. Hydrology Research, 2017, 48, 802-821.	1.1	8
20	Dispersal capacity shapes responses of river island invertebrate assemblages to vegetation structure, island area, and flooding. Insect Conservation and Diversity, 2017, 10, 341-353.	1.4	14
21	Changing climate shifts timing of European floods. Science, 2017, 357, 588-590.	6.0	584
22	On the use of a four-parameter kappa distribution in regional frequency analysis. Hydrological Sciences Journal, 2017, 62, 1354-1363.	1.2	23
23	Integrated modeling in urban hydrology: reviewing the role of monitoring technology in overcoming the issue of â€~big data' requirements. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1177.	2.8	16
24	Estimating the microbiological risks associated with inland flood events: Bridging theory and models of pathogen transport. Critical Reviews in Environmental Science and Technology, 2016, 46, 1787-1833.	6.6	9
25	Evidence and Implications of Nonlinear Flood Response in a Small Mountainous Watershed. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	11
26	Current understanding of hydrological processes on common urban surfaces. Progress in Physical Geography, 2016, 40, 699-713.	1.4	48
27	An empirical investigation of climate and land-use effects on water quantity and quality in two urbanising catchments in the southern United Kingdom. Science of the Total Environment, 2016, 548-549, 164-172.	3.9	54
28	Identification of coherent flood regions across Europe by using the longest streamflow records. Journal of Hydrology, 2015, 528, 341-360.	2.3	79
29	Detection and attribution of urbanization effect on flood extremes using nonstationary floodâ€frequency models. Water Resources Research, 2015, 51, 4244-4262.	1.7	150
30	A bivariate extension of the <scp>H</scp> osking and <scp>W</scp> allis goodnessâ€ofâ€fit measure for regional distributions. Water Resources Research, 2015, 51, 896-907.	1.7	20
31	Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrological Processes, 2015, 29, 4666-4682.	1.1	53
32	How reliable are design flood estimates in the <scp>UK</scp> ?. Journal of Flood Risk Management, 2015, 8, 237-246.	1.6	16
33	Regional parent flood frequency distributions in Europe – Part 1: Is the GEV model suitable as a pan-European parent?. Hydrology and Earth System Sciences, 2014, 18, 4381-4389.	1.9	59
34	Regional parent flood frequency distributions in Europe – Part 2: Climate and scale controls. Hydrology and Earth System Sciences, 2014, 18, 4391-4401.	1.9	47
35	Reassessing flood frequency for the Sussex Ouse, Lewes: the inclusion of historical flood information since AD 1650. Natural Hazards and Earth System Sciences, 2014, 14, 2817-2828.	1.5	26
36	Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrology and Earth System Sciences, 2014, 18, 2735-2772.	1.9	423

#	Article	IF	CITATIONS
37	Non-stationarity in annual and seasonal series of peak flow and precipitation in the UK. Natural Hazards and Earth System Sciences, 2014, 14, 1125-1144.	1.5	66
38	Uncertainty in Flood Frequency Analysis. , 2014, , 153-197.		8
39	Modelling the hydrological impacts of rural land use change. Hydrology Research, 2014, 45, 737-754.	1.1	44
40	A comparison of two event-based flood models (ReFH-rainfall runoff model and HEC-HMS) at two Korean catchments, Bukil and Jeungpyeong. KSCE Journal of Civil Engineering, 2014, 18, 330-343.	0.9	46
41	Regional flood hydrology in a semi-arid catchment using a GLS regression model. Journal of Hydrology, 2014, 514, 158-171.	2.3	20
42	Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology, 2014, 519, 3634-3650.	2.3	459
43	Documentary evidence of past floods in Europe and their utility in flood frequency estimation. Journal of Hydrology, 2014, 517, 963-973.	2.3	116
44	Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. Journal of Hydrology, 2014, 515, 59-70.	2.3	346
45	Using multiple donor sites for enhanced flood estimation in ungauged catchments. Water Resources Research, 2014, 50, 6646-6657.	1.7	12
46	Flood generation and classification of a semi-arid intermittent flow watershed: Evrotas river. International Journal of River Basin Management, 2013, 11, 77-92.	1.5	24
47	Flood frequency estimation using a joint probability approach within a Monte Carlo framework. Hydrological Sciences Journal, 2013, 58, 8-27.	1.2	20
48	A hydrological assessment of the November 2009 floods in Cumbria, UK. Hydrology Research, 2013, 44, 180-197.	1.1	30
49	Modelling design flood hydrographs in catchments with mixed urban and rural land cover. Hydrology Research, 2013, 44, 1040-1057.	1.1	22
50	Classifying low flow hydrological regimes at a regional scale. Hydrology and Earth System Sciences, 2011, 15, 3741-3750.	1.9	28
51	Modelling the impact of urbanization on flood frequency relationships in the UK. Hydrology Research, 2010, 41, 391-405.	1.1	49
52	Predicting the index flood in ungauged UK catchments: On the link between data-transfer and spatial model error structure. Journal of Hydrology, 2010, 387, 1-9.	2.3	33
53	A formal statistical model for pooled analysis of extreme floods. Hydrology Research, 2009, 40, 465-480.	1.1	31
54	An exploratory analysis of error components in hydrological regression modeling. Water Resources Research, 2009, 45, .	1.7	31

THOMAS KJELDSEN

#	Article	IF	CITATIONS
55	Modelling the impact of urbanisation on flood runoff volume. Water Management, 2009, 162, 329-336.	0.4	13
56	Recursive Estimation of a Hydrological Regression Model. , 2007, , .		0
57	Estimation of an index flood using data transfer in the UK. Hydrological Sciences Journal, 2007, 52, 86-98.	1.2	34
58	An investigation of site-similarity approaches to generalisation of a rainfall–runoff model. Hydrology and Earth System Sciences, 2007, 11, 500-515.	1.9	52
59	Prediction uncertainty in a median-based index flood method using L moments. Water Resources Research, 2006, 42, .	1.7	31
60	A shortcut to seasonal design rainfall estimates in the UK. Water and Environment Journal, 2006, 20, 282-286.	1.0	1
61	Sampling variance of flood quantiles from the generalised logistic distribution estimated using the method of L-moments. Hydrology and Earth System Sciences, 2004, 8, 183-190.	1.9	24
62	Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems / Choix d'estimateurs de fiabilité, de résilience et de vulnérabilité pour les analyses de risque de systèmes de ressources en eau. Hydrological Sciences Journal, 2004, 49, .	1.2	134
63	Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method. Journal of Hydrology, 2002, 255, 194-211.	2.3	84
64	Comparison of regional index flood estimation procedures based on the extreme value type I distribution. Stochastic Environmental Research and Risk Assessment, 2002, 16, 358-373.	1.9	26
65	Use of a two-component exponential distribution in partial duration modelling of hydrological droughts in Zimbabwean rivers. Hydrological Sciences Journal, 2000, 45, 285-298.	1.2	59
66	Barriers to sustainable water resources management—a Zimbabwean case study. Hydrological Sciences Journal, 1999, 44, 529-539.	1.2	5
67	Estimating single-site design flood variance using a generalised logistic distribution. Water Management, 0, , 1-12.	0.4	1
68	Identifying and interpreting extreme rainfall events using image classification. Journal of Hydroinformatics, 0, , .	1.1	0
69	Quantifying the influence of urban development on runoff in South Africa. Urban Water Journal, 0, , 1-14.	1.0	0