Yury Gogotsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118685/publications.pdf

Version: 2024-02-01

904 papers 217,043 citations

206 h-index

444 g-index

945 all docs 945
docs citations

945 times ranked 83835 citing authors

#	Article	IF	Citations
1	An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Research, 2022, 15, 535-541.	5.8	31
2	Towards Watt-scale hydroelectric energy harvesting by Ti ₃ C ₂ T _{<i>x</i>yerror for the power generators. Energy and Environmental Science, 2022, 15, 123-135.}	15.6	70
3	Highâ€Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene. Advanced Functional Materials, 2022, 32, 2109970.	7.8	33
4	Surface Redox Pseudocapacitance of Partially Oxidized Titanium Carbide MXene in Water-in-Salt Electrolyte. ACS Energy Letters, 2022, 7, 30-35.	8.8	43
5	Shifts in valence states in bimetallic MXenes revealed by electron energy-loss spectroscopy (EELS). 2D Materials, 2022, 9, 025004.	2.0	11
6	The path to high-rate energy storage goes through narrow channels. Joule, 2022, 6, 28-30.	11.7	7
7	Ionically Active MXene Nanopore Actuators. Small, 2022, 18, e2105857.	5.2	9
8	Bridging MXene layers for strong multifunctional films. Matter, 2022, 5, 381-384.	5.0	5
9	Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries. Chemical Engineering Journal, 2022, 436, 135012.	6.6	30
10	Delamination of MXenes using bovine serum albumin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128580.	2.3	15
11	Deformation of and Interfacial Stress Transfer in Ti ₃ C ₂ MXene–Polymer Composites. ACS Applied Materials & Deformation of the Composites. ACS Applied Materials & Deformation of the Composites. ACS Applied Materials & Deformation of the Composites of the Composites of the Composite of the	4.0	19
12	Evaluation of two-dimensional transition-metal carbides and carbonitrides (MXenes) for SERS substrates. MRS Bulletin, 2022, 47, 545-554.	1.7	19
13	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	7.3	O
14	MXenes for Photonics. ACS Photonics, 2022, 9, 1108-1116.	3.2	44
15	Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nature Energy, 2022, 7, 222-228.	19.8	130
16	Water dynamics in pristine and porous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ti</mml:mi><mml:m mathvariant="normal">C<mml:mi>2</mml:mi></mml:m></mml:msub><mml:msub><mml:mi mathvariant="normal">T</mml:mi><mml:mi>x</mml:mi></mml:msub></mml:mrow></mml:math> MXene as probed by quasielastic neutron scattering. Physical Review Materials, 2022, 6, .	n>30.9	ıl:mn>1
17	Guidelines for Synthesis and Processing of Chemically Stable Two-Dimensional V ₂ CT _{<i>x</i>} MXene. Chemistry of Materials, 2022, 34, 499-509.	3.2	74
18	Tip-Enhanced Raman Scattering Imaging of Single- to Few-Layer Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Nano, 2022, 16, 6858-6865.	7.3	26

#	Article	IF	CITATIONS
19	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	13.8	429
20	Lithium-ions uptake by MAX/graphene hybrid. , 2022, 7, 59-71.		1
21	Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2T MXene. Chemical Engineering Journal, 2022, 446, 136963.	6.6	37
22	How Water Attacks MXene. Chemistry of Materials, 2022, 34, 4975-4982.	3.2	44
23	MXene-Assisted Ablation of Cells with a Pulsed Near-Infrared Laser. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28683-28696.	4.0	23
24	Termination-Property Coupling via Reversible Oxygen Functionalization of MXenes. ACS Nanoscience Au, 2022, 2, 433-439.	2.0	5
25	N–p-Conductor Transition of Gas Sensing Behaviors in Mo ₂ CT _{<i>x</i>} MXene. ACS Sensors, 2022, 7, 2225-2234.	4.0	20
26	Removal and recovery of ammonia from simulated wastewater using Ti3C2Tx MXene in flow electrode capacitive deionization. Npj Clean Water, 2022, 5, .	3.1	9
27	MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte. Nano Energy, 2021, 79, 105433.	8.2	31
28	Solutionâ€Processed Ti ₃ C ₂ T <i>_x</i> MXene Antennas for Radioâ€Frequency Communication. Advanced Materials, 2021, 33, e2003225.	11.1	109
29	Additiveâ€Free Aqueous MXene Inks for Thermal Inkjet Printing on Textiles. Small, 2021, 17, .	5.2	61
30	The Broad Chromatic Range of Twoâ€Dimensional Transition Metal Carbides. Advanced Optical Materials, 2021, 9, 2001563.	3.6	118
31	Intercalationâ€Induced Reversible Electrochromic Behavior of Twoâ€Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene in Organic Electrolytes. ChemElectroChem, 2021, 8, 151-156.	1.7	21
32	Microsupercapacitor with a 500Ânm gap between MXene/CNT electrodes. Nano Energy, 2021, 81, 105616.	8.2	61
33	Highly conductive and scalable Ti3C2T -coated fabrics for efficient electromagnetic interference shielding. Carbon, 2021, 174, 382-389.	5.4	84
34	Optimizing Ion Pathway in Titanium Carbide MXene for Practical Highâ€Rate Supercapacitor. Advanced Energy Materials, 2021, 11, 2003025.	10.2	152
35	Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science, 2021, 120, 100757.	16.0	288
36	Interconnected Twoâ€dimensional Arrays of Niobium Nitride Nanocrystals as Stable Lithium Host. Batteries and Supercaps, 2021, 4, 106-111.	2.4	7

#	Article	IF	CITATIONS
37	Adsorption separation of heavier isotope gases in subnanometer carbon pores. Nature Communications, 2021, 12, 546.	5.8	18
38	Moderating cellular inflammation using 2-dimensional titanium carbide MXene and graphene variants. Biomaterials Science, 2021, 9, 1805-1815.	2.6	16
39	Ultrafast assembly and healing of nanomaterial networks on polymer substrates for flexible hybrid electronics. Applied Materials Today, 2021, 22, 100956.	2.3	7
40	Mechanisms of the Planar Growth of Lithium Metal Enabled by the 2D Lattice Confinement from a Ti ₃ C ₂ T <i>_x</i> MXene Intermediate Layer. Advanced Functional Materials, 2021, 31, 2010987.	7.8	33
41	Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti ₃ C ₂ MXene. ACS Nano, 2021, 15, 6420-6429.	7.3	417
42	High electrical conductivity and breakdown current density of individual monolayer Ti3C2T MXene flakes. Matter, 2021, 4, 1413-1427.	5.0	100
43	MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano, 2021, 15, 5775-5780.	7.3	250
44	Charge Dynamics in TiO ₂ /MXene Composites. Journal of Physical Chemistry C, 2021, 125, 10473-10482.	1.5	20
45	Spectroscopic signature of negative electronic compressibility from the Ti core-level of titanium carbonitride MXene. Applied Physics Reviews, 2021, 8, .	5.5	7
46	2D MXenes with antiviral and immunomodulatory properties: A pilot study against SARS-CoV-2. Nano Today, 2021, 38, 101136.	6.2	63
47	The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372, .	6.0	1,209
48	High Breakdown Current Density in Monolayer Nb ₄ C ₃ T _{<i>x</i>} MXene., 2021, 3, 1088-1094.		19
49	In Situ TEM Investigation of Lithium Intercalation in Ti ₃ C ₂ T _X MXenes for Energy Storage Applications. Microscopy and Microanalysis, 2021, 27, 2736-2737.	0.2	5
50	Atomic-scale Feedback-controlled Electron Beam Fabrication of 2D Materials. Microscopy and Microanalysis, 2021, 27, 3072-3073.	0.2	0
51	Development and Applications of MXene-Based Functional Fibers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36655-36669.	4.0	47
52	Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. Chemistry of Materials, 2021, 33, 6346-6355.	3.2	102
53	Probing the <i>In Situ</i> Pseudocapacitive Charge Storage in Ti ₃ C ₂ MXene Thin Films with X-ray Reflectivity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43597-43605.	4.0	8
54	Titanium Carbide MXene Shows an Electrochemical Anomaly in Water-in-Salt Electrolytes. ACS Nano, 2021, 15, 15274-15284.	7.3	56

#	Article	IF	CITATIONS
55	Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. Journal of Chemical Health and Safety, 2021, 28, 326-338.	1.1	102
56	Ten Years of Progress in the Synthesis and Development of MXenes. Advanced Materials, 2021, 33, e2103393.	11.1	410
57	Can Anions Be Inserted into MXene?. Journal of the American Chemical Society, 2021, 143, 12552-12559.	6.6	63
58	Ti ₃ C ₂ T _{<i>x</i>} MXene Flakes for Optical Control of Neuronal Electrical Activity. ACS Nano, 2021, 15, 14662-14671.	7.3	32
59	Mapping (Pseudo)Capacitive Charge Storage Dynamics in Titanium Carbide MXene Electrodes in Aqueous Electrolytes Using 3D Bode Analysis. Energy Storage Materials, 2021, 39, 347-353.	9.5	44
60	MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Science Translational Medicine, 2021, 13, eabf8629.	5.8	68
61	Enhanced absorption of electromagnetic waves in Ti3C2T MXene films with segregated polymer inclusions. Composites Science and Technology, 2021, 213, 108878.	3.8	41
62	Enhancing the Energy Storage Capabilities of Ti ₃ C ₂ T <i>>_x</i> MXene Electrodes by Atomic Surface Reduction. Advanced Functional Materials, 2021, 31, 2106294.	7.8	28
63	MXene-based suspension electrode with improved energy density for electrochemical flow capacitors. Journal of Power Sources, 2021, 506, 230187.	4.0	5
64	Two-Dimensional MXene Modified Electrodes for Improved Anodic Performance in Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 2021, 168, 090518.	1.3	16
65	Adjustable electrochemical properties of solid-solution MXenes. Nano Energy, 2021, 88, 106308.	8.2	55
66	Multimodal Spectroscopic Study of Surface Termination Evolution in Cr ₂ TiC ₂ T <i>></i> MXene. Advanced Materials Interfaces, 2021, 8, 2001789.	1.9	22
67	Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti ₃ C ₂ T _x in air. Journal of Materials Chemistry A, 2021, 9, 5016-5025.	5.2	77
68	Confined water controls capacitance. Nature Materials, 2021, 20, 1597-1598.	13.3	10
69	Percolation Characteristics of Conductive Additives for Capacitive Flowable (Semi-Solid) Electrodes. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS APPLI	4.0	38
70	Oxidation-resistant titanium carbide MXene films. Journal of Materials Chemistry A, 2020, 8, 573-581.	5.2	217
71	Distinguishing electronic contributions of surface and sub-surface transition metal atoms in Ti-based MXenes. 2D Materials, 2020, 7, 025015.	2.0	31
72	An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small, 2020, 16, e1906851.	5.2	186

#	Article	IF	Citations
73	Electrochemical Activation of 2D MXeneâ€Based Hybrid for High Volumetric Mgâ€lon Storage Capacitance. Batteries and Supercaps, 2020, 3, 354-360.	2.4	28
74	Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Composites Part B: Engineering, 2020, 182, 107603.	5.9	55
75	Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2T -MXene membrane capacitive deionization system. Desalination, 2020, 477, 114267.	4.0	71
76	Proton Redox and Transport in MXene-Confined Water. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 763-770.	4.0	53
77	Synthesis of Mo ₄ VAlC ₄ MAX Phase and Two-Dimensional Mo ₄ VC ₄ MXene with Five Atomic Layers of Transition Metals. ACS Nano, 2020, 14, 204-217.	7.3	429
78	Ti3C2T /PEDOT:PSS hybrid materials for room-temperature methanol sensor. Chinese Chemical Letters, 2020, 31, 1018-1021.	4.8	57
79	MXeneâ€Based Dendriteâ€Free Potassium Metal Batteries. Advanced Materials, 2020, 32, e1906739.	11.1	244
80	Evidence of a magnetic transition in atomically thin Cr ₂ TiC ₂ T _X MXene. Nanoscale Horizons, 2020, 5, 1557-1565.	4.1	51
81	MXene-Derived Bilayered Vanadium Oxides with Enhanced Stability in Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10892-10901.	2.5	21
82	Low-Temperature pseudocapacitive energy storage in Ti3C2T MXene. Energy Storage Materials, 2020, 33, 382-389.	9.5	61
83	MXenes: From Discovery to Applications. Advanced Functional Materials, 2020, 30, 2007011.	7.8	70
84	Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nature Communications, 2020, 11, 6160.	5.8	183
85	2H-MoS ₂ on Mo ₂ CT _{<i>x</i>} MXene Nanohybrid for Efficient and Durable Electrocatalytic Hydrogen Evolution. ACS Nano, 2020, 14, 16140-16155.	7.3	180
86	Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization. Energy and Environmental Materials, 2020, 3, 398-404.	7.3	42
87	Electrode material–ionic liquid coupling for electrochemical energy storage. Nature Reviews Materials, 2020, 5, 787-808.	23.3	210
88	Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti ₃ CNT <i> _x </i> (MXene). Science, 2020, 369, 446-450.	6.0	844
89	Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding. Matter, 2020, 3, 546-557.	5.0	127
90	Vertically Aligned Nanopatterns of Amineâ€Functionalized Ti ₃ C ₂ MXene via Soft Lithography. Advanced Materials Interfaces, 2020, 7, 2000424.	1.9	20

#	Article	IF	Citations
91	Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19, 1151-1163.	13.3	1,187
92	Enhanced Rate Capability of Ionâ€Accessible Ti ₃ C ₂ T <i>>_x</i> Advanced Energy Materials, 2020, 10, 2001411.	10.2	50
93	Tailoring Electronic and Optical Properties of MXenes through Forming Solid Solutions. Journal of the American Chemical Society, 2020, 142, 19110-19118.	6.6	198
94	Bulk and Surface Chemistry of the Niobium MAX and MXene Phases from Multinuclear Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2020, 142, 18924-18935.	6.6	35
95	Tutorials and Articles on Best Practices. ACS Nano, 2020, 14, 10751-10753.	7.3	1
96	Adsorption of Uremic Toxins Using Ti ₃ C ₂ T <i>_{<i>×</i>}</i> MXene for Dialysate Regeneration. ACS Nano, 2020, 14, 11787-11798.	7.3	71
97	Bioencapsulated MXene Flakes for Enhanced Stability and Composite Precursors. Advanced Functional Materials, 2020, 30, 2004554.	7.8	63
98	Electrically Conductive MXene-Coated Glass Fibers for Damage Monitoring in Fiber-Reinforced Composites. Journal of Carbon Research, 2020, 6, 64.	1.4	5
99	MXeneâ€Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000739.	7.8	168
100	2D Titanium Carbide (Ti ₃ C ₂ T <i>_x</i>) in Accommodating Intraocular Lens Design. Advanced Functional Materials, 2020, 30, 2000841.	7.8	26
101	All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy, 2020, 75, 104971.	8.2	119
102	A Gelâ€Free Ti ₃ C ₂ T <i>_x</i> â€Based Electrode Array for Highâ€Density, Highâ€Resolution Surface Electromyography. Advanced Materials Technologies, 2020, 5, 2000325.	3.0	39
103	Bath Electrospinning of Continuous and Scalable Multifunctional MXeneâ€Infiltrated Nanoyarns. Small, 2020, 16, e2002158.	5.2	81
104	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	7.3	455
105	Tunable electrochromic behavior of titanium-based MXenes. Nanoscale, 2020, 12, 14204-14212.	2.8	42
106	Hydrophobic and Stable MXene–Polymer Pressure Sensors for Wearable Electronics. ACS Applied Materials & Company: Interfaces, 2020, 12, 15362-15369.	4.0	161
107	Beyond Ti ₃ C ₂ T _{<i>x</i>} : MXenes for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 5008-5016.	7.3	489
108	3D knitted energy storage textiles using MXene-coated yarns. Materials Today, 2020, 34, 17-29.	8.3	103

#	Article	IF	CITATIONS
109	Phenothiazine–MXene Aqueous Asymmetric Pseudocapacitors. ACS Applied Energy Materials, 2020, 3, 3144-3149.	2.5	40
110	Interface binding and mechanical properties of MXene-epoxy nanocomposites. Composites Science and Technology, 2020, 192, 108124.	3.8	64
111	New aqueous energy storage devices comprising graphite cathodes, MXene anodes and concentrated sulfuric acid solutions. Energy Storage Materials, 2020, 32, 1-10.	9.5	32
112	Tracking ion intercalation into layered Ti ₃ C ₂ MXene films across length scales. Energy and Environmental Science, 2020, 13, 2549-2558.	15.6	100
113	Taking MXenes from the lab to commercial products. Chemical Engineering Journal, 2020, 401, 125786.	6.6	139
114	Additive-Free MXene Liquid Crystals and Fibers. ACS Central Science, 2020, 6, 254-265.	5. 3	182
115	Fabrication of Ti ₃ C ₂ MXene Microelectrode Arrays for In Vivo Neural Recording. Journal of Visualized Experiments, 2020, , .	0.2	15
116	Micromechanical modeling of MXene-polymer composites. Carbon, 2020, 162, 402-409.	5.4	46
117	Electrical and Elastic Properties of Individual Single‣ayer Nb ₄ C ₃ T <i>_x</i> MXene Flakes. Advanced Electronic Materials, 2020, 6, 1901382.	2.6	134
118	Electromagnetic Interference Shielding: Electromagnetic Shielding of Monolayer MXene Assemblies (Adv. Mater. 9/2020). Advanced Materials, 2020, 32, 2070064.	11.1	16
119	Ti ₃ C ₂ T _{<i>x</i>} MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. ACS Nano, 2020, 14, 3576-3586.	7.3	277
120	Nested hybrid nanotubes. Science, 2020, 367, 506-507.	6.0	22
121	lon Structure Transition Enhances Charging Dynamics in Subnanometer Pores. ACS Nano, 2020, 14, 2395-2403.	7.3	52
122	Electromagnetic Shielding of Monolayer MXene Assemblies. Advanced Materials, 2020, 32, e1906769.	11.1	410
123	Scalable Synthesis of Ti ₃ C ₂ T _{<i>x</i>} MXene. Advanced Engineering Materials, 2020, 22, 1901241.	1.6	468
124	Enhancement of Ti ₃ C ₂ MXene Pseudocapacitance after Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 5079-5086.	1.5	46
125	MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials, 2020, 30, 1910504.	7.8	308
126	A 2D Titanium Carbide MXene Flexible Electrode for Highâ€Efficiency Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2000919.	11.1	122

#	Article	IF	CITATIONS
127	Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti ₃ C ₂ T <i>_x</i> MXene. Chemistry of Materials, 2020, 32, 3480-3488.	3.2	677
128	Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti ₃ C ₂ T _x MXene. Chemical Communications, 2020, 56, 6090-6093.	2.2	76
129	Flexible Nb ₄ C ₃ T <i>_x</i> Film with Large Interlayer Spacing for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2020, 30, 2000815.	7.8	92
130	Scalable Manufacturing of Freeâ€Standing, Strong Ti ₃ C ₂ T <i>>_×</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	11.1	613
131	Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation. Nano-Micro Letters, 2020, 12, 89.	14.4	61
132	Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 10584-10592.	1.5	62
133	Synthesis and electrochemical properties of 2D molybdenum vanadium carbides – solid solution MXenes. Journal of Materials Chemistry A, 2020, 8, 8957-8968.	5.2	90
134	Surface Modification of a MXene by an Aminosilane Coupling Agent. Advanced Materials Interfaces, 2020, 7, 1902008.	1.9	134
135	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	7.3	1
136	Conductivity extraction of thin Ti3C2T <i>x</i> MXene films over 1–10 GHz using capacitively coupled test-fixture. Applied Physics Letters, 2020, 116, .	1.5	12
137	Dynamically controlled random lasing with colloidal titanium carbide MXene. Optical Materials Express, 2020, 10, 2304.	1.6	1
138	Superfast high-energy storage hybrid device composed of MXene and Chevrel-phase electrodes operated in saturated LiCl electrolyte solution. Journal of Materials Chemistry A, 2019, 7, 19761-19773.	5.2	32
139	Electrochemical Behavior of Ti ₃ C ₂ T _{<i>x</i>} MXene in Environmentally Friendly Methanesulfonic Acid Electrolyte. ChemSusChem, 2019, 12, 4480-4486.	3.6	19
140	Organic-inorganic all-pseudocapacitive asymmetric energy storage devices. Nano Energy, 2019, 65, 104022.	8.2	52
141	Interfacial Assembly of Ultrathin, Functional MXene Films. ACS Applied Materials & Diterfaces, 2019, 11, 32320-32327.	4.0	91
142	Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge. Nano Energy, 2019, 64, 103961.	8.2	78
143	Diffusion-Induced Transient Stresses in Li-Battery Electrodes Imaged by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring and Environmental Scanning Electron Microscopy. ACS Energy Letters, 2019, 4, 1907-1917.	8.8	17
144	Surfaceâ€Modified Metallic Ti ₃ C ₂ T _x MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905694.	7.8	125

#	Article	IF	CITATIONS
145	Sculpting Liquids with Two-Dimensional Materials: The Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene Sheets at Liquid–Liquid Interfaces. ACS Nano, 2019, 13, 12385-12392.	7.3	52
146	Introduction to 2D Transition Metal Carbides and Nitrides (MXenes)., 2019,, 3-12.		43
147	Optical Properties of MXenes. , 2019, , 327-346.		12
148	Knittable and Washable Multifunctional MXeneâ€Coated Cellulose Yarns. Advanced Functional Materials, 2019, 29, 1905015.	7.8	239
149	MXeneâ€Bonded Flexible Hard Carbon Film as Anode for Stable Na/Kâ€lon Storage. Advanced Functional Materials, 2019, 29, 1906282.	7.8	214
150	Energy Storage Data Reporting in Perspectiveâ€"Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Advanced Energy Materials, 2019, 9, 1902007.	10.2	793
151	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie, 2019, 131, 18013-18019.	1.6	38
152	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie - International Edition, 2019, 58, 17849-17855.	7.2	117
153	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	7.3	16
154	The Rise of MXenes. ACS Nano, 2019, 13, 8491-8494.	7.3	1,399
155	Ultrafast Growth of Thin Hexagonal and Pyramidal Molybdenum Nitride Crystals and Films. , 2019, 1, 383-388.		17
156	A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti ₃ C ₂ T ₂ MXene in Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 11078-11086.	7.3	232
157	Electrochemical Interaction of Sn-Containing MAX Phase (Nb ₂ SnC) with Li-lons. ACS Energy Letters, 2019, 4, 2452-2457.	8.8	36
158	Electrochemical Actuators Based on Two-Dimensional Ti ₃ C ₂ T _{<i>x</i>} (MXene). Nano Letters, 2019, 19, 7443-7448.	4.5	108
159	Ultralight and Mechanically Robust Ti ₃ C ₂ T <i>>_x</i> Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. ACS Applied Materials & Diterfaces, 2019, 11, 38046-38054.	4.0	283
160	Boosting Performance of Na–S Batteries Using Sulfur-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. ACS Nano, 2019, 13, 11500-11509.	7.3	220
161	Colloidal Gelation in Liquid Metals Enables Functional Nanocomposites of 2D Metal Carbides (MXenes) and Lightweight Metals. ACS Nano, 2019, 13, 12415-12424.	7.3	41
162	Nanotechnology Facets of the Periodic Table of Elements. ACS Nano, 2019, 13, 10879-10886.	7.3	26

#	Article	IF	Citations
163	van der Waals epitaxy of highly (111)-oriented BaTiO3 on MXene. Nanoscale, 2019, 11, 622-630.	2.8	7
164	Carbonâ€Based Metalâ€Free Catalysts for Energy Storage and Environmental Remediation. Advanced Materials, 2019, 31, e1806128.	11.1	188
165	Magnesium-lon Storage Capability of MXenes. ACS Applied Energy Materials, 2019, 2, 1572-1578.	2.5	89
166	Control of MXenes' electronic properties through termination and intercalation. Nature Communications, 2019, 10, 522.	5.8	721
167	Capacitance of coarse-grained carbon electrodes with thickness up to 800â€Î¼m. Electrochimica Acta, 2019, 302, 38-44.	2.6	14
168	SnO ₂ –Ti ₃ C ₂ MXene electron transport layers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5635-5642.	5.2	173
169	Electrospun MXene/carbon nanofibers as supercapacitor electrodes. Journal of Materials Chemistry A, 2019, 7, 269-277.	5.2	464
170	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211
171	Revealing the Pseudoâ€Intercalation Charge Storage Mechanism of MXenes in Acidic Electrolyte. Advanced Functional Materials, 2019, 29, 1902953.	7.8	176
172	Twoâ€Dimensional Arrays of Transition Metal Nitride Nanocrystals. Advanced Materials, 2019, 31, e1902393.	11.1	93
173	Onâ€Chip MXene Microsupercapacitors for ACâ€Line Filtering Applications. Advanced Energy Materials, 2019, 9, 1901061.	10.2	113
174	Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today, 2019, 30, 80-102.	8.3	390
175	Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of â~100 °C. Journal of Materials Chemistry A, 2019, 7, 16339-16346.	5.2	21
176	Enhanced Selectivity of MXene Gas Sensors through Metal Ion Intercalation: In Situ X-ray Diffraction Study. ACS Sensors, 2019, 4, 1365-1372.	4.0	154
177	Immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis. International Journal of Energy Production and Management, 2019, 6, 163-174.	1.9	23
178	Effect of Ti ₃ AlC ₂ MAX Phase on Structure and Properties of Resultant Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Applied Nano Materials, 2019, 2, 3368-3376.	2.4	210
179	Additive-free MXene inks and direct printing of micro-supercapacitors. Nature Communications, 2019, 10, 1795.	5.8	649
180	MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Materials, 2019, 20, 455-461.	9.5	136

#	Article	IF	CITATIONS
181	Extending the low temperature operational limit of Li-ion battery to â^'80â€-°C. Energy Storage Materials, 2019, 23, 383-389.	9.5	101
182	Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Advanced Optical Materials, 2019, 7, 1900267.	3.6	245
183	Scalable Synthesis of Ultrathin Mn ₃ N ₂ Exhibiting Roomâ€Temperature Antiferromagnetism. Advanced Functional Materials, 2019, 29, 1809001.	7.8	67
184	Scalable Manufacturing of Large and Flexible Sheets of MXene/Graphene Heterostructures. Advanced Materials Technologies, 2019, 4, 1800639.	3.0	90
185	Electrochromic Effect in Titanium Carbide MXene Thin Films Produced by Dipâ€Coating. Advanced Functional Materials, 2019, 29, 1809223.	7.8	148
186	Prediction of Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled Machine Learning. ACS Nano, 2019, 13, 3031-3041.	7.3	187
187	Influences from solvents on charge storage in titanium carbide MXenes. Nature Energy, 2019, 4, 241-248.	19.8	363
188	Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene. Chemistry of Materials, 2019, 31, 2941-2951.	3.2	160
189	An investigation into the factors governing the oxidation of two-dimensional Ti ₃ C ₂ MXene. Nanoscale, 2019, 11, 8387-8393.	2.8	276
190	High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chemistry of Materials, 2019, 31, 3324-3332.	3.2	296
191	Surface Termination Dependent Work Function and Electronic Properties of Ti ₃ C ₂ T _{<i>x</i>} MXene. Chemistry of Materials, 2019, 31, 6590-6597.	3.2	359
192	Temperature-independent capacitance of carbon-based supercapacitor from â^'100 to 60 °C. Energy Storage Materials, 2019, 22, 323-329.	9.5	104
193	Cation Molecular Structure Affects Mobility and Transport of Electrolytes in Porous Carbons. Journal of the Electrochemical Society, 2019, 166, A507-A514.	1.3	12
194	High capacity silicon anodes enabled by MXene viscous aqueous ink. Nature Communications, 2019, 10, 849.	5.8	253
195	Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale, 2019, 11, 20295-20300.	2.8	81
196	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
197	Direct Writing of Additiveâ€Free MXeneâ€inâ€Water Ink for Electronics and Energy Storage. Advanced Materials Technologies, 2019, 4, 1800256.	3.0	112
198	MXeneâ€"Conducting Polymer Asymmetric Pseudocapacitors. Advanced Energy Materials, 2019, 9, 1802917.	10.2	262

#	Article	IF	Citations
199	Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy, 2019, 56, 151-159.	8.2	67
200	Nanoindentation of monolayer Ti C T MXenes via atomistic simulations: The role of composition and defects on strength. Computational Materials Science, 2019, 157, 168-174.	1.4	61
201	MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. Joule, 2019, 3, 164-176.	11.7	250
202	Surface-Engineered MXenes: Electric Field Control of Magnetism and Enhanced Magnetic Anisotropy. ACS Nano, 2019, 13, 2831-2839.	7.3	126
203	Computational Screening of MXene Electrodes for Pseudocapacitive Energy Storage. Journal of Physical Chemistry C, 2019, 123, 315-321.	1.5	69
204	(Invited) MXenes: From Fundamental Science to Emerging Applications. ECS Meeting Abstracts, 2019, , .	0.0	0
205	Aerosol Jet Printing of Ti3C2 Mxene Aqueous Ink. ECS Meeting Abstracts, 2019, , .	0.0	1
206	Understanding the MXene Pseudocapacitance. Journal of Physical Chemistry Letters, 2018, 9, 1223-1228.	2.1	231
207	Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes. ACS Nano, 2018, 12, 2685-2694.	7.3	288
208	Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage. Journal of Materials Chemistry A, 2018, 6, 4617-4622.	5.2	103
209	Selective Etching of Silicon from Ti ₃ SiC ₂ (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie - International Edition, 2018, 57, 5444-5448.	7.2	299
210	Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors. Journal of Physical Chemistry C, 2018, 122, 10476-10481.	1.5	53
211	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	7.3	0
212	Enhanced Terahertz Shielding of MXenes with Nanoâ€Metamaterials. Advanced Optical Materials, 2018, 6, 1701076.	3.6	157
213	Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti ₃ C ₂ T _x) nanosheets. Journal of Materials Chemistry A, 2018, 6, 3522-3533.	5. 2	397
214	Porous Ti ₃ C ₂ T _{<i>x</i>} MXene for Ultrahigh-Rate Sodium-Ion Storage with Long Cycle Life. ACS Applied Nano Materials, 2018, 1, 505-511.	2.4	132
215	All Pseudocapacitive MXeneâ€RuO ₂ Asymmetric Supercapacitors. Advanced Energy Materials, 2018, 8, 1703043.	10.2	757
216	Metallic Ti ₃ C ₂ T _{<i>x</i>} MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano, 2018, 12, 986-993.	7.3	1,153

#	Article	IF	Citations
217	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 1864-1868.	1.6	67
218	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 1846-1850.	7.2	520
219	Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity. ACS Applied Energy Materials, 2018, 1, 173-180.	2.5	304
220	Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene). ACS Photonics, 2018, 5, 1115-1122.	3.2	252
221	MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9, 155.	5.8	825
222	Saturable Absorption in 2D Ti ₃ C ₂ MXene Thin Films for Passive Photonic Diodes. Advanced Materials, 2018, 30, 1705714.	11.1	332
223	Stamping of Flexible, Coplanar Microâ€Supercapacitors Using MXene Inks. Advanced Functional Materials, 2018, 28, 1705506.	7.8	427
224	Selfâ€Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage. Advanced Materials, 2018, 30, e1707334.	11.1	467
225	2D Titanium Carbide/Reduced Graphene Oxide Heterostructures for Supercapacitor Applications. Batteries and Supercaps, 2018, 1, 33-38.	2.4	72
226	Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale, 2018, 10, 6005-6013.	2.8	184
227	Energy Storage in Nanomaterials – Capacitive, Pseudocapacitive, or Battery-like?. ACS Nano, 2018, 12, 2081-2083.	7.3	1,215
228	Porous Cryo-Dried MXene for Efficient Capacitive Deionization. Joule, 2018, 2, 778-787.	11.7	326
229	Selective Etching of Silicon from Ti ₃ SiC ₂ (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie, 2018, 130, 5542-5546.	1.6	127
230	In Situ Acoustic Diagnostics of Particle-Binder Interactions in Battery Electrodes. Joule, 2018, 2, 988-1003.	11.7	29
231	Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochimica Acta, 2018, 259, 752-761.	2.6	103
232	Asymmetric Flexible MXeneâ€Reduced Graphene Oxide Microâ€Supercapacitor. Advanced Electronic Materials, 2018, 4, 1700339.	2.6	324
233	Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Materials, 2018, 12, 128-136.	9.5	167
234	Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study. Computational Materials Science, 2018, 143, 418-424.	1.4	129

#	Article	IF	CITATIONS
235	Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy, 2018, 44, 103-110.	8.2	273
236	Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces. Carbon, 2018, 129, 104-118.	5.4	36
237	Topochemical synthesis of 2D materials. Chemical Society Reviews, 2018, 47, 8744-8765.	18.7	232
238	Oxidized 2D titanium carbide MXene. Materials Today, 2018, 21, 1064-1065.	8.3	30
239	Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Advanced Materials, 2018, 30, e1804779.	11.1	850
240	Emerging materials for tailorable nanophotonic devices. , 2018, , .		1
241	Humidity Exposure Enhances Microscopic Mobility in a Room-Temperature Ionic Liquid in MXene. Journal of Physical Chemistry C, 2018, 122, 27561-27566.	1.5	20
242	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	16.1	1,236
243	Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent MXene Microsupercapacitors. Small, 2018, 14, e1802864.	5.2	97
244	Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries. ACS Omega, 2018, 3, 12489-12494.	1.6	77
245	MXene Sorbents for Removal of Urea from Dialysate: A Step toward the Wearable Artificial Kidney. ACS Nano, 2018, 12, 10518-10528.	7.3	174
246	2D titanium carbide (MXene) for wireless communication. Science Advances, 2018, 4, eaau0920.	4.7	381
247	Thermally Reduced Graphene/MXene Film for Enhanced Liâ€ion Storage. Chemistry - A European Journal, 2018, 24, 18556-18563.	1.7	65
248	Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano, 2018, 12, 9635-9638.	7.3	537
249	Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes. Electrochemistry Communications, 2018, 96, 103-107.	2.3	191
250	Perfusion double-channel micropipette probes for oxygen flux mapping with single-cell resolution. Beilstein Journal of Nanotechnology, 2018, 9, 850-860.	1.5	1
251	Layerâ€byâ€Layer Assembly of Crossâ€Functional Semiâ€transparent MXeneâ€Carbon Nanotubes Composite Fil for Nextâ€Generation Electromagnetic Interference Shielding. Advanced Functional Materials, 2018, 28, 1803360.	ms 7.8	407
252	Two-Dimensional Ti ₃ C ₂ MXene for High-Resolution Neural Interfaces. ACS Nano, 2018, 12, 10419-10429.	7.3	173

#	Article	IF	CITATIONS
253	MXenes for Plasmonic and Metamaterial Devices. , 2018, , .		3
254	Effect of Synthesis on Performance of MXene/Iron Oxide Anode Material for Lithium-Ion Batteries. Langmuir, 2018, 34, 11325-11334.	1.6	58
255	Antimicrobial Properties of 2D MnO ₂ and MoS ₂ Nanomaterials Vertically Aligned on Graphene Materials and Ti ₃ C ₂ MXene. Langmuir, 2018, 34, 7192-7200.	1.6	111
256	Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy, 2018, 50, 479-488.	8.2	176
257	Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 2018, 557, 409-412.	13.7	965
258	Rapid Adsorption of Proinflammatory Cytokines by Graphene Nanoplatelets and Their Composites for Extracorporeal Detoxification. Journal of Nanomaterials, 2018, 2018, 1-8.	1.5	12
259	Cold Sintered Ceramic Nanocomposites of 2D MXene and Zinc Oxide. Advanced Materials, 2018, 30, e1801846.	11.1	149
260	Voltage-Gated Ions Sieving through 2D MXene Ti ₃ C ₂ T _{<i>x</i>} Membranes. ACS Applied Nano Materials, 2018, 1, 3644-3652.	2.4	102
261	Size-Dependent Physical and Electrochemical Properties of Two-Dimensional MXene Flakes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24491-24498.	4.0	275
262	Moving ions confined between graphene sheets. Nature Nanotechnology, 2018, 13, 625-627.	15.6	19
263	Electrolyte cation length influences electrosorption and dynamics in porous carbon supercapacitors. Electrochimica Acta, 2018, 283, 882-893.	2.6	25
264	Graphene-Based Materials for the Fast Removal of Cytokines from Blood Plasma. ACS Applied Bio Materials, 2018, 1, 436-443.	2.3	22
265	Adsorption of Bovine Serum Albumin on Carbon-Based Materials. Journal of Carbon Research, 2018, 4, 3.	1.4	32
266	Reticulated Carbon Electrodes for Improved Charge Transport in Electrochemical Flow Capacitors. Journal of the Electrochemical Society, 2018, 165, A2519-A2527.	1.3	14
267	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	5. 2	158
268	Bistacked Titanium Carbide (MXene) Anodes for Hybrid Sodium-Ion Capacitors. ACS Energy Letters, 2018, 3, 2094-2100.	8.8	145
269	Vertically aligned MoS ₂ on Ti ₃ C ₂ (MXene) as an improved HER catalyst. Journal of Materials Chemistry A, 2018, 6, 16882-16889.	5.2	146
270	Direct Correlation of MXene Surface Chemistry and Electronic Properties. Microscopy and Microanalysis, 2018, 24, 1606-1607.	0.2	8

#	Article	IF	CITATIONS
271	Elastic properties of 2D Ti ₃ C ₂ T _{<i>x</i>} MXene monolayers and bilayers. Science Advances, 2018, 4, eaat0491.	4.7	637
272	Tuning Noncollinear Spin Structure and Anisotropy in Ferromagnetic Nitride MXenes. ACS Nano, 2018, 12, 6319-6325.	7.3	101
273	MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors. ACS Energy Letters, 2018, 3, 1597-1603.	8.8	389
274	In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nature Communications, 2018, 9, 2266.	5.8	125
275	Direct Assessment of Nanoconfined Water in 2D Ti ₃ C ₂ Electrode Interspaces by a Surface Acoustic Technique. Journal of the American Chemical Society, 2018, 140, 8910-8917.	6.6	102
276	Inkjet Printing of Selfâ€Assembled 2D Titanium Carbide and Protein Electrodes for Stimuliâ€Responsive Electromagnetic Shielding. Advanced Functional Materials, 2018, 28, 1801972.	7.8	157
277	(Invited) High-Temperature Behaviors of MXenes. ECS Meeting Abstracts, 2018, , .	0.0	0
278	Abstract 3210: Photothermal therapy of malignant mesothelioma with delaminated MXene Ti3C2. , 2018, , .		0
279	Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4296-4300.	4.0	188
280	Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides. ACS Nano, 2017, 11, 2180-2186.	7.3	359
281	2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2, .	23.3	5,261
282	Atomic layer deposition of SnO 2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34, 249-256.	8.2	423
283	Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents. Chemistry of Materials, 2017, 29, 1632-1640.	3.2	667
284	Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-Dimensional Titanium Carbide (MXene): Intercalation and Pseudocapacitance. Chemistry of Materials, 2017, 29, 2731-2738.	3.2	170
285	Direct observation of active material interactions in flowable electrodes using X-ray tomography. Faraday Discussions, 2017, 199, 511-524.	1.6	50
286	Synergetic effects of K ⁺ and Mg ²⁺ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti ₃ C ₂ MXene. Faraday Discussions, 2017, 199, 393-403.	1.6	55
287	Processing of Onion-like Carbon for Electrochemical Capacitors. ECS Journal of Solid State Science and Technology, 2017, 6, M3103-M3108.	0.9	14
288	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4

#	Article	IF	Citations
289	Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers. Journal of Materials Chemistry A, 2017, 5, 5260-5265.	5.2	142
290	Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Materials, 2017, 8, 42-48.	9.5	192
291	High and Stable Ionic Conductivity in 2D Nanofluidic Ion Channels between Boron Nitride Layers. Journal of the American Chemical Society, 2017, 139, 6314-6320.	6.6	193
292	In Situ Monitoring of Gravimetric and Viscoelastic Changes in 2D Intercalation Electrodes. ACS Energy Letters, 2017, 2, 1407-1415.	8.8	56
293	Nanodiamonds in composites: polymer chemistry and tribology. , 2017, , 365-390.		4
294	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
295	Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chemistry of Materials, 2017, 29, 4848-4856.	3.2	1,120
296	Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Scientific Reports, 2017, 7, 1598.	1.6	305
297	Tailoring the morphological properties of anodized Ti 3 SiC 2 for better power density of Li-ion microbatteries. Electrochemistry Communications, 2017, 81, 29-33.	2.3	15
298	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Applied Materials &	4.0	323
299	Designing Pseudocapacitance for Nb ₂ O ₅ /Carbide-Derived Carbon Electrodes and Hybrid Devices. Langmuir, 2017, 33, 9407-9415.	1.6	67
300	Tunable Magnetism and Transport Properties in Nitride MXenes. ACS Nano, 2017, 11, 7648-7655.	7. 3	276
301	Two-dimensional heterostructures for energy storage. Nature Energy, 2017, 2, .	19.8	747
302	High-density freestanding graphene/carbide-derived carbon film electrodes for electrochemical capacitors. Carbon, 2017, 118, 642-649.	5.4	47
303	Engineering Ultrathin Polyaniline in Micro/Mesoporous Carbon Supercapacitor Electrodes Using Oxidative Chemical Vapor Deposition. Advanced Materials Interfaces, 2017, 4, 1601201.	1.9	66
304	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
305	High-Throughput Survey of Ordering Configurations in MXene Alloys Across Compositions and Temperatures. ACS Nano, 2017, 11, 4407-4418.	7.3	146
306	Prof. Millie Dresselhaus (1930–2017), Carbon Nanomaterials Pioneer. ACS Nano, 2017, 11, 2307-2308.	7.3	2

#	Article	IF	Citations
307	Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes. Journal of Physical Chemistry Letters, 2017, 8, 422-428.	2.1	165
308	Solvent Polarity Governs Ion Interactions and Transport in a Solvated Room-Temperature Ionic Liquid. Journal of Physical Chemistry Letters, 2017, 8, 167-171.	2.1	45
309	Self-Amplified Surface Charging and Partitioning of Ionic Liquids in Nanopores. Physical Review Applied, 2017, 8, .	1.5	13
310	2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage. Joule, 2017, 1, 443-452.	11.7	104
311	Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>} MXene). Chemistry of Materials, 2017, 29, 7633-7644.	3.2	3,129
312	Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate. Journal of Physical Chemistry C, 2017, 121, 19983-19988.	1.5	281
313	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	7.3	0
314	2D metal carbides (MXenes) in fibers. Materials Today, 2017, 20, 481-482.	8.3	24
315	Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nature Materials, 2017, 16, 1225-1232.	13.3	219
316	Nanodiamonds suppress the growth of lithium dendrites. Nature Communications, 2017, 8, 336.	5.8	327
317	Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomaterials Science, 2017, 5, 2131-2143.	2.6	30
318	Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Naâ€lon Storage. Advanced Materials, 2017, 29, 1702410.	11.1	757
319	Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. Journal of Materials Chemistry A, 2017, 5, 17442-17451.	5.2	211
320	Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Advanced Materials, 2017, 29, 1702678.	11.1	756
321	Metallic MXene Saturable Absorber for Femtosecond Modeâ€Locked Lasers. Advanced Materials, 2017, 29, 1702496.	11.1	475
322	Na″on Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide. Advanced Energy Materials, 2017, 7, 1700959.	10.2	168
323	Anodized Ti 3 SiC 2 as a Potential Anode Material for Li-Ion Microbatteries. ECS Transactions, 2017, 77, 351-352.	0.3	0
324	Atomic Defects and Edge Structure in Single-layer Ti ₃ C ₂ T _x MXene. Microscopy and Microanalysis, 2017, 23, 1704-1705.	0.2	7

#	Article	IF	CITATIONS
325	Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes. Electrochimica Acta, 2017, 258, 979-987.	2.6	85
326	Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power. Journal of the American Chemical Society, 2017, 139, 18681-18687.	6.6	101
327	BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. ACS Applied Materials & Interfaces, 2017, 9, 43163-43170.	4.0	190
328	Investigation of chloride ion adsorption onto Ti ₂ C MXene monolayers by first-principles calculations. Journal of Materials Chemistry A, 2017, 5, 24720-24727.	5.2	57
329	2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale, 2017, 9, 17722-17730.	2.8	327
330	Selective Molecular Separation on Ti ₃ C ₂ T <i>>_x</i> ê"Graphene Oxide Membranes during Pressure-Driven Filtration: Comparison with Graphene Oxide and MXenes. ACS Applied Materials & Date: Acc Applied Materials & Date	4.0	193
331	Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2017, 2, .	19.8	1,626
332	Thermoelectric Properties of Two-Dimensional Molybdenum-Based MXenes. Chemistry of Materials, 2017, 29, 6472-6479.	3.2	270
333	Calorimetric Study of Alkali Metal Ion (K ⁺ , Na ⁺ , Li ⁺) Exchange in a Clay-Like MXene. Journal of Physical Chemistry C, 2017, 121, 15145-15153.	1.5	31
334	Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Advanced Functional Materials, 2017, 27, 1701264.	7.8	1,354
335	Effect of nanostructured carbon support on copper electrocatalytic activity toward CO2 electroreduction to hydrocarbon fuels. Catalysis Today, 2017, 288, 2-10.	2.2	39
336	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	7.3	1
337	An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched Molecular Dynamics. Journal of Carbon Research, 2017, 3, 32.	1.4	13
338	First-Principles Calculations of Ti ₂ N and Ti ₂ NT ₂ (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond. Journal of Physical Chemistry C, 2017, 121, 13025-13034.	1.5	151
339	Evidence of molecular hydrogen trapped in two-dimensional layered titanium carbide-based MXene. Physical Review Materials, 2017, 1, .	0.9	21
340	Influence of humidity on performance and microscopic dynamics of an ionic liquid in supercapacitor. Physical Review Materials, 2017, 1, .	0.9	15
341	Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. Physical Review Materials, $2017,1,.$	0.9	45
342	Active Metamaterials Based on Monolayer Titanium Carbide MXene for Random Lasing. , 2017, , .		4

#	Article	IF	CITATIONS
343	Plasmonic Resonances in Nanostructured MXene: Highly Broadband Absorber., 2017,,.		2
344	Redox-Active Hybrid Materials for Pseudocapacitive Energy Storage. ECS Meeting Abstracts, 2017, , .	0.0	0
345	(Invited) 2D Transition Metal Carbides (MXenes) in Flow-Assisted Electrochemical Energy and Water Technologies. ECS Meeting Abstracts, 2017, , .	0.0	0
346	Capacitive Deionization Performance of Thermally Surface Modified Activated Carbon Cloth Electrodes. ECS Meeting Abstracts, 2017, , .	0.0	0
347	Effects of High-Porosity Conductive Foams on the Electrochemical Performance of Electrochemical Flow Capacitors. ECS Meeting Abstracts, 2017, , .	0.0	0
348	(Industrial Electrochemistry and Electrochemical Engineering Division H. H. Dow Memorial Student) Tj ETQq 000 Storage. ECS Meeting Abstracts, 2017, , .	rgBT /Ove 0.0	rlock 10 Tf 5 0
349	(Invited) Flexible Mxene/Graphene Films for Ultrafast Supercapacitors. ECS Meeting Abstracts, 2017, , .	0.0	0
350	Ion Dynamics and Electrosorption in Carbon Electrodes with Bimodal Porosities and Heterogeneous Interfaces. ECS Meeting Abstracts, 2017, , .	0.0	0
351	Synthesis of Twoâ€Dimensional Materials for Capacitive Energy Storage. Advanced Materials, 2016, 28, 6104-6135.	11.1	548
352	Synthesis and Characterization of 2D Molybdenum Carbide (MXene). Advanced Functional Materials, 2016, 26, 3118-3127.	7.8	945
353	Fabrication of Ti ₃ C ₂ T <i>>_x</i> MXene Transparent Thin Films with Tunable Optoelectronic Properties. Advanced Electronic Materials, 2016, 2, 1600050.	2.6	587
354	MoS ₂ Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1502161.	10.2	444
355	Highly Conductive Optical Quality Solutionâ€Processed Films of 2D Titanium Carbide. Advanced Functional Materials, 2016, 26, 4162-4168.	7.8	680
356	Pseudocapacitive Electrodes Produced by Oxidantâ€Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). Advanced Materials, 2016, 28, 1517-1522.	11.1	850
357	Porous Twoâ€Dimensional Transition Metal Carbide (MXene) Flakes for Highâ€Performance Liâ€lon Storage. ChemElectroChem, 2016, 3, 689-693.	1.7	452
358	Effects of Applied Potential and Water Intercalation on the Surface Chemistry of Ti ₂ C and Mo ₂ C MXenes. Journal of Physical Chemistry C, 2016, 120, 28432-28440.	1.5	104
359	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	7.3	22
360	MXene Materials: Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti ₃ C ₂ MXene Flakes (Adv. Electron. Mater. 12/2016). Advanced Electronic Materials, 2016, 2, .	2.6	18

#	Article	IF	CITATIONS
361	Lithium-ion capacitors with 2D Nb2CTx (MXene) – carbon nanotube electrodes. Journal of Power Sources, 2016, 326, 686-694.	4.0	175
362	Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chemistry of Materials, 2016, 28, 3937-3943.	3.2	210
363	Synthesis of two-dimensional titanium nitride Ti ₄ N ₃ (MXene). Nanoscale, 2016, 8, 11385-11391.	2.8	878
364	Influence of Surface Oxidation on Ion Dynamics and Capacitance in Porous and Nonporous Carbon Electrodes. Journal of Physical Chemistry C, 2016, 120, 8730-8741.	1.5	40
365	Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. Journal of Power Sources, 2016, 326, 575-579.	4.0	250
366	Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures. ACS Energy Letters, 2016, 1, 21-26.	8.8	146
367	The Rising and Receding Fortunes of Electrochemists. ACS Nano, 2016, 10, 3875-3876.	7. 3	19
368	Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene. Energy and Environmental Science, 2016, 9, 2586-2594.	15.6	129
369	Ion-Exchange and Cation Solvation Reactions in Ti ₃ C ₂ MXene. Chemistry of Materials, 2016, 28, 3507-3514.	3.2	499
370	Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy, 2016, 26, 100-107.	8.2	74
371	MXeneâ€onâ€Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601372.	10.2	368
372	Atomic Defects in Monolayer Titanium Carbide (Ti ₃ C ₂ T _{<i>x</i>}) MXene. ACS Nano, 2016, 10, 9193-9200.	7.3	785
373	Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353, 1137-1140.	6.0	3,688
374	Titanum Carbide MXene Flakes as Novel 2D Metallic Solution-Processed Films. ECS Transactions, 2016, 75, 37-41.	0.3	2
375	An Update from Flatland. ACS Nano, 2016, 10, 8121-8123.	7.3	18
376	Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. ACS Nano, 2016, 10, 9093-9103.	7.3	77
377	All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy and Environmental Science, 2016, 9, 2847-2854.	15.6	551
378	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Letters, 2016, 1, 589-594.	8.8	1,100

#	Article	IF	CITATIONS
379	Effect of graphene nano-platelet morphology on the elastic modulus of soft and hard biopolymers. Carbon, 2016, 109, 331-339.	5.4	44
380	Electrochemical and in-situ X-ray diffraction studies of Ti 3 C 2 T x MXene in ionic liquid electrolyte. Electrochemistry Communications, 2016, 72, 50-53.	2.3	134
381	Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale, 2016, 8, 16371-16378.	2.8	227
382	Increase in Capacitance by Subnanometer Pores in Carbon. ACS Energy Letters, 2016, 1, 1262-1265.	8.8	173
383	Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases. Journal of Physical Chemistry C, 2016, 120, 28131-28137.	1.5	41
384	Suspension Electrodes for Flow-Assisted Electrochemical Systems. Nanostructure Science and Technology, 2016, , 377-416.	0.1	3
385	Ti ₃ C ₂ T _x (MXene)–polyacrylamide nanocomposite films. RSC Advances, 2016, 6, 72069-72073.	1.7	162
386	Multidimensional materials and device architectures for future hybrid energy storage. Nature Communications, 2016, 7, 12647.	5.8	1,281
387	Electrochemical in Situ Tracking of Volumetric Changes in Two-Dimensional Metal Carbides (MXenes) in Ionic Liquids. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32089-32093.	4.0	87
388	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	5.8	379
389	Gas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts. Scientific Reports, 2016, 6, 35532.	1.6	52
390	2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 2016, 30, 603-613.	8.2	293
391	One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS. Scientific Reports, 2016, 6, 32049.	1.6	316
392	Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti ₃ C ₂ MXene Flakes. Advanced Electronic Materials, 2016, 2, 1600255.	2.6	1,160
393	Demonstration of Li-lon Capacity of MAX Phases. ACS Energy Letters, 2016, 1, 1094-1099.	8.8	57
394	Layered Orthorhombic Nb ₂ O ₅ @Nb ₄ C ₃ T <i>>_x</i> and TiO ₂ @Ti ₃ C ₂ T <i>>_x</i> Hierarchical Composites for High Performance Liâ€ion Batteries. Advanced Functional Materials, 2016, 26, 4143-4151.	7.8	309
395	Nanoscale Elastic Changes in 2D Ti ₃ C ₂ T _{<i>x</i>} (MXene) Pseudocapacitive Electrodes. Advanced Energy Materials, 2016, 6, 1502290.	10.2	117
396	Twoâ€Dimensional Nbâ€Based M ₄ C ₃ Solid Solutions (MXenes). Journal of the American Ceramic Society, 2016, 99, 660-666.	1.9	234

#	Article	IF	Citations
397	Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26, 513-523.	8.2	710
398	Anodized Ti ₃ SiC ₂ As an Anode Material for Li-ion Microbatteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16670-16676.	4.0	32
399	NMR reveals the surface functionalisation of Ti ₃ C ₂ MXene. Physical Chemistry Chemical Physics, 2016, 18, 5099-5102.	1.3	689
400	High capacitance of coarse-grained carbide derived carbon electrodes. Journal of Power Sources, 2016, 306, 32-41.	4.0	65
401	Resolving the Structure of Ti ₃ C ₂ T _{<i>x</i>} MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function. Chemistry of Materials, 2016, 28, 349-359.	3.2	374
402	X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science, 2016, 362, 406-417.	3.1	1,369
403	The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 2016, 8, 9128-9133.	2.8	225
404	Effect of Metal Ion Intercalation on the Structure of MXene and Water Dynamics on its Internal Surfaces. ACS Applied Materials & Surfaces, 2016, 8, 8859-8863.	4.0	225
405	On-chip and freestanding elastic carbon films for micro-supercapacitors. Science, 2016, 351, 691-695.	6.0	623
406	The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. Journal of Colloid and Interface Science, 2016, 468, 253-261.	5.0	83
407	Antibacterial Activity of Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Nano, 2016, 10, 3674-3684.	7.3	904
408	Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons, 2016, 1, 227-234.	4.1	394
409	H ₂ O ₂ assisted room temperature oxidation of Ti ₂ C MXene for Li-ion battery anodes. Nanoscale, 2016, 8, 7580-7587.	2.8	396
410	Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. Journal of Power Sources, 2016, 306, 510-515.	4.0	245
411	Not just graphene: The wonderful world of carbon and related nanomaterials. MRS Bulletin, 2015, 40, 1110-1121.	1.7	78
412	Garment Devices: Integrating Energy Storage into Textiles. , 2015, , 658-679.		2
413	Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ Xâ€Ray Absorption Spectroscopy. Advanced Energy Materials, 2015, 5, 1500589.	10.2	521
414	Understanding Defectâ€Stabilized Noncovalent Functionalization of Graphene. Advanced Materials Interfaces, 2015, 2, 1500277.	1.9	19

#	Article	IF	CITATIONS
415	Waste Tire Derived Carbon–Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life. ChemSusChem, 2015, 8, 3576-3581.	3.6	94
416	Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors. Journal of Physical Chemistry Letters, 2015, 6, 2305-2309.	2.1	358
417	High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy, 2015, 15, 662-669.	8.2	63
418	Solid-phase synthesis, characterization, and cellular activities of collagen-model Nanodiamond-peptide conjugates. Biopolymers, 2015, 104, 186-195.	1.2	16
419	Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti _{<i>n</i>+1} C _{<i>n</i>+1} C _{<i>n</i>+1} C _{<i>n</i>}	1.3	232
420	Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.	7.3	3
421	Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes. Progress in Natural Science: Materials International, 2015, 25, 631-641.	1.8	29
422	Effect of Oxidation of Carbon Material on Suspension Electrodes for Flow Electrode Capacitive Deionization. Environmental Science & Environmental Scie	4.6	184
423	Towards Highâ€Energyâ€Density Pseudocapacitive Flowable Electrodes by the Incorporation of Hydroquinone. ChemSusChem, 2015, 8, 835-843.	3.6	80
424	Interfacial ionic †liquids': connecting static and dynamic structures. Journal of Physics Condensed Matter, 2015, 27, 032101.	0.7	67
425	Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage. Journal of the Electrochemical Society, 2015, 162, A5007-A5012.	1.3	46
426	Graphene-like carbide derived carbon for high-power supercapacitors. Nano Energy, 2015, 12, 197-206.	8.2	114
427	Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti ₂ SC. Angewandte Chemie - International Edition, 2015, 54, 4810-4814.	7.2	100
428	Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano, 2015, 9, 9507-9516.	7.3	1,395
429	Nanodiamond–polymer composites. Diamond and Related Materials, 2015, 58, 161-171.	1.8	187
430	Synthesis of carbon core–shell pore structures and their performance as supercapacitors. Microporous and Mesoporous Materials, 2015, 218, 130-136.	2.2	35
431	Intercalation of cations into partially reduced molybdenum oxide for high-rate pseudocapacitors. Energy Storage Materials, 2015, 1, 1-8.	9.5	92
432	Amineâ€Assisted Delamination of Nb ₂ C MXene for Liâ€Ion Energy Storage Devices. Advanced Materials, 2015, 27, 3501-3506.	11.1	749

#	Article	IF	Citations
433	Formulation of Ionicâ€Liquid Electrolyte To Expand the Voltage Window of Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 4806-4809.	7.2	228
434	Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field. ACS Nano, 2015, 9, 3969-3977.	7.3	266
435	High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochimica Acta, 2015, 163, 246-251.	2.6	204
436	Graphene-containing flowable electrodes for capacitive energy storage. Carbon, 2015, 92, 142-149.	5.4	98
437	New Insights into the Structure of Nanoporous Carbons from NMR, Raman, and Pair Distribution Function Analysis. Chemistry of Materials, 2015, 27, 6848-6857.	3.2	88
438	Materials for suspension (semi-solid) electrodes for energy and water technologies. Chemical Society Reviews, 2015, 44, 8664-8687.	18.7	142
439	Charge- and Size-Selective Ion Sieving Through Ti ₃ C ₂ T _{<i>x</i>} MXene Membranes. Journal of Physical Chemistry Letters, 2015, 6, 4026-4031.	2.1	743
440	Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 2015, 17, 27-35.	8.2	166
441	Transition metal carbides go 2D. Nature Materials, 2015, 14, 1079-1080.	13.3	301
442	Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochemistry Communications, 2015, 60, 199-203.	2.3	46
443	Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nature Communications, 2015, 6, 8849.	5.8	658
444	Natural Fiber Welded Electrode Yarns for Knittable Textile Supercapacitors. Advanced Energy Materials, 2015, 5, 1401286.	10.2	152
445	Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Advanced Materials, 2015, 27, 339-345.	11.1	1,125
446	Synthesis of Two-Dimensional Materials by Selective Extraction. Accounts of Chemical Research, 2015, 48, 128-135.	7.6	590
447	Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy, 2015, 11, 568-578.	8.2	183
448	Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon. Journal of Power Sources, 2015, 274, 121-129.	4.0	66
449	Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartzâ€Crystal Admittance and In Situ Electronic Conductance Measurements. Advanced Energy Materials, 2015, 5, 1400815.	10.2	283
450	Electrochemistry and Electrocatalysis at Single Gold Nanoparticles Attached to Carbon Nanoelectrodes. ChemElectroChem, 2015, 2, 58-63.	1.7	85

#	Article	IF	Citations
451	Freestanding MoO3â^' nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy, 2014, 9, 355-363.	8.2	146
452	Effects of structural disorder and surface chemistry on electric conductivity and capacitance of porous carbon electrodes. Faraday Discussions, 2014, 172, 139-62.	1.6	54
453	Ion Intercalation into Graphitic Carbon with a Low Surface Area for High Energy Density Supercapacitors. Journal of the Electrochemical Society, 2014, 161, A1486-A1494.	1.3	27
454	Surface-Enhanced Raman Spectroscopy-Active Substrates: Adapting the Shape of Plasmonic Nanoparticles for Different Biological Applications. Journal of Nanoscience and Nanotechnology, 2014, 14, 3046-3051.	0.9	5
455	One-dimensional nanoprobes for single-cell studies. Nanomedicine, 2014, 9, 153-168.	1.7	15
456	High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications, 2014, 48, 118-122.	2.3	420
457	Twoâ€Dimensional Materials: 25th Anniversary Article: MXenes: A New Family of Twoâ€Dimensional Materials (Adv. Mater. 7/2014). Advanced Materials, 2014, 26, 982-982.	11.1	106
458	Structure of Nanocrystalline <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>Ti</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><td>:mp>3b><td>ıml;mn>nrow></td></td></mml:msub></mml:mrow></mml:math>	:mp>3b> <td>ıml;mn>nrow></td>	ıml;mn>nrow>
459	Layer-by-layer Oxidation: A New Process Allowing for Decreasing the Size of Detonation Nanodiamond. Chemie-Ingenieur-Technik, 2014, 86, 1542-1542.	0.4	O
460	Conductive two-dimensional titanium carbide â€~clay' with high volumetric capacitance. Nature, 2014, 516, 78-81.	13.7	4,306
461	A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.	7.3	6
462	(Invited) Knitted Electrochemical Capacitors Via Natural Fiber Welded Electrode Yarns. ECS Transactions, 2014, 61, 17-19.	0.3	2
463	Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors. Journal of Power Sources, 2014, 247, 489-496.	4.0	95
464	Hollow graphitic carbon nanospheres: synthesis and properties. Journal of Materials Science, 2014, 49, 1947-1956.	1.7	15
465	Where Do Batteries End and Supercapacitors Begin?. Science, 2014, 343, 1210-1211.	6.0	4,605
466	25th Anniversary Article: MXenes: A New Family of Twoâ€Dimensional Materials. Advanced Materials, 2014, 26, 992-1005.	11.1	4,547
467	Thermochemistry of onion-like carbons. Carbon, 2014, 69, 490-494.	5.4	16
468	Roomâ€Temperature Carbideâ€Derived Carbon Synthesis by Electrochemical Etching of MAX Phases. Angewandte Chemie - International Edition, 2014, 53, 4877-4880.	7.2	133

#	Article	IF	CITATIONS
469	Capacitive deionization concept based on suspension electrodes without ion exchange membranes. Electrochemistry Communications, 2014, 43, 18-21.	2.3	109
470	Synthesis of carbon films by electrochemical etching of SiC with hydrofluoric acid in nonaqueous solvents. Carbon, 2014, 71, 181-189.	5.4	17
471	Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy, 2014, 6, 1-9.	8.2	182
472	Layer-by-Layer Oxidation for Decreasing the Size of Detonation Nanodiamond. Chemistry of Materials, 2014, 26, 3479-3484.	3.2	42
473	Energy storage wrapped up. Nature, 2014, 509, 568-569.	13.7	163
474	Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 569-574.	1.5	111
475	The many faces of carbon in electrochemistry: general discussion. Faraday Discussions, 2014, 172, 117-137.	1.6	4
476	Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16676-16681.	3.3	1,713
477	Activated Carbon Spheres as a Flowable Electrode in Electrochemical Flow Capacitors. Journal of the Electrochemical Society, 2014, 161, A1078-A1083.	1.3	68
478	In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti ₃ C ₂ and formation of carbon-supported TiO ₂ . Journal of Materials Chemistry A, 2014, 2, 14339.	5.2	287
479	One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chemical Communications, 2014, 50, 7420-7423.	2.2	614
480	In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations. Physical Chemistry Chemical Physics, 2014, 16, 18241.	1.3	41
481	Carbon electrode interfaces for synthesis, sensing and electrocatalysis: general discussion. Faraday Discussions, 2014, 172, 497-520.	1.6	1
482	Carbon electrodes for energy storage: general discussion. Faraday Discussions, 2014, 172, 239-260.	1.6	11
483	Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. Journal of Materials Chemistry A, 2014, 2, 14334-14338.	5.2	602
484	Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nanoscale, 2014, 6, 2286.	2.8	97
485	Open Carbon Nanopipettes as Resistive-Pulse Sensors, Rectification Sensors, and Electrochemical Nanoprobes. Analytical Chemistry, 2014, 86, 8897-8901.	3.2	57
486	Textile energy storage in perspective. Journal of Materials Chemistry A, 2014, 2, 10776.	5.2	474

#	Article	IF	CITATIONS
487	Thermochemistry of nanodiamond terminated by oxygen containing functional groups. Carbon, 2014, 80, 544-550.	5.4	42
488	Carbon Pipette-Based Electrochemical Nanosampler. Analytical Chemistry, 2014, 86, 3365-3372.	3.2	62
489	Synthesis and characterization of two-dimensional Nb ₄ C ₃ (MXene). Chemical Communications, 2014, 50, 9517-9520.	2.2	481
490	Ti ₃ C ₂ MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11173-11179.	4.0	1,165
491	Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries. ACS Nano, 2014, 8, 9606-9615.	7.3	814
492	Compressible Carbon Nanotube–Graphene Hybrid Aerogels with Superhydrophobicity and Superoleophilicity for Oil Sorption. Environmental Science and Technology Letters, 2014, 1, 214-220.	3.9	212
493	The Electrical Double Layer of Dicationic Ionic Liquids at Onion-like Carbon Surface. Journal of Physical Chemistry C, 2014, 118, 3901-3909.	1.5	46
494	What Nano Can Do for Energy Storage. ACS Nano, 2014, 8, 5369-5371.	7.3	191
495	Ring Current Effects: Factors Affecting the NMR Chemical Shift of Molecules Adsorbed on Porous Carbons. Journal of Physical Chemistry C, 2014, 118, 7508-7514.	1.5	110
496	Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chemistry of Materials, 2014, 26, 2374-2381.	3.2	1,173
497	Role of Surface Structure on Li-lon Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides. Journal of the American Chemical Society, 2014, 136, 6385-6394.	6.6	1,164
498	Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes. Journal of Physics Condensed Matter, 2014, 26, 284104.	0.7	40
499	Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon, 2014, 77, 155-164.	5.4	148
500	Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy and Environmental Science, 2014, 7, 867.	15.6	1,112
501	Strainâ€Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes. Advanced Energy Materials, 2014, 4, 1300683.	10.2	39
502	Composite Manganese Oxide Percolating Networks As a Suspension Electrode for an Asymmetric Flow Capacitor. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8886-8893.	4.0	102
503	Polymer/Graphene Hybrid Aerogel with High Compressibility, Conductivity, and "Sticky― Superhydrophobicity. ACS Applied Materials & Interfaces, 2014, 6, 3242-3249.	4.0	140
504	Graphene – transition metal oxide hybrid materials. Materials Today, 2014, 17, 253-254.	8.3	39

#	Article	IF	Citations
505	Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Accounts of Chemical Research, 2013, 46, 1094-1103.	7.6	1,281
506	Structure and Electrochemical Performance of Carbideâ€Derived Carbon Nanopowders. Advanced Functional Materials, 2013, 23, 1081-1089.	7.8	165
507	Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy and Environmental Science, 2013, 6, 2698.	15.6	494
508	Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes. Journal of Physical Chemistry Letters, 2013, 4, 2829-2837.	2.1	111
509	Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. Journal of Solid State Electrochemistry, 2013, 17, 2971-2977.	1.2	37
510	A high performance pseudocapacitive suspension electrode for the electrochemical flow capacitor. Electrochimica Acta, 2013, 111, 888-897.	2.6	141
511	Adsorption of Drugs on Nanodiamond: Toward Development of a Drug Delivery Platform. Molecular Pharmaceutics, 2013, 10, 3728-3735.	2.3	154
512	Raman spectroscopy study of the nanodiamond-to-carbon onion transformation. Nanotechnology, 2013, 24, 205703.	1.3	104
513	Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy, 2013, 2, 702-712.	8.2	135
514	Nitrogen-doped carbon microfibers with porous textures. Carbon, 2013, 58, 128-133.	5.4	29
515	Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength. Materials Research Bulletin, 2013, 48, 4797-4803.	2.7	64
516	On-chip micro-supercapacitors for operation in a wide temperature range. Electrochemistry Communications, 2013, 36, 53-56.	2.3	110
517	New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. Journal of the American Chemical Society, 2013, 135, 15966-15969.	6.6	1,609
518	Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.	7.3	1
519	Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science, 2013, 341, 1502-1505.	6.0	3,329
520	Onion-like carbon and carbon nanotube film antennas. Applied Physics Letters, 2013, 103, .	1.5	22
521	lon Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry. Journal of the American Chemical Society, 2013, 135, 12818-12826.	6.6	174
522	High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Advances, 2013, 3, .	0.6	86

#	Article	IF	Citations
523	Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. Journal of Power Sources, 2013, 225, 240-244.	4.0	129
524	In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy and Environmental Science, 2013, 6, 225-231.	15.6	60
525	Development of a Green Supercapacitor Composed Entirely of Environmentally Friendly Materials. ChemSusChem, 2013, 6, 2269-2280.	3.6	155
526	Photocatalytic WO ₃ and TiO ₂ Films on Brass. International Journal of Applied Ceramic Technology, 2013, 10, 26-32.	1.1	7
527	Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 2013, 25, 2219-2223.	11.1	1,249
528	Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. Journal of Materials Chemistry A, 2013, 1, 1963-1968.	5.2	193
529	Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4, 1716.	5.8	2,095
530	Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from Ⱂ50 to 80°C. Nano Energy, 2013, 2, 403-411.	8.2	314
531	Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors. Electrochimica Acta, 2013, 98, 123-130.	2.6	121
532	Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Physical Chemistry Chemical Physics, 2013, 15, 7722.	1.3	77
533	Nanodiamond graphitization: a magnetic resonance study. Journal of Physics Condensed Matter, 2013, 25, 245303.	0.7	37
534	Vertically Oriented Propylene Carbonate Molecules and Tetraethyl Ammonium Ions in Carbon Slit Pores. Journal of Physical Chemistry C, 2013, 117, 5752-5757.	1.5	25
535	Structure–activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation. Journal of Materials Chemistry A, 2013, 1, 6051.	5.2	36
536	Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Materials Chemistry and Physics, 2013, 139, 147-152.	2.0	348
537	Ordered mesoporous silicon carbide-derived carbon for high-power supercapacitors. Electrochemistry Communications, 2013, 34, 109-112.	2.3	75
538	Adsorption of proteins in channels of carbon nanotubes: Effect of surface chemistry. Materials Express, 2013, 3, 1-10.	0.2	18
539	Electrical conductivity of thermally hydrogenated nanodiamond powders. Journal of Applied Physics, 2013, 113, .	1.1	59
540	Nano-Silicon Containing Composite Graphitic Anodes with Improved Cycling Stability for Application in High Energy Lithium-Ion Batteries. ECS Journal of Solid State Science and Technology, 2013, 2, M3028-M3033.	0.9	5

#	Article	IF	CITATIONS
541	Effect of defects on graphitization of SiC. Journal of Materials Research, 2013, 28, 952-957.	1.2	4
542	Carbon Onions: Synthesis and Electrochemical Applications. Electrochemical Society Interface, 2013, 22, 61-66.	0.3	111
543	Direct Observation of Pseudocapacitor Electrode Behavior During Electrochemical Biasing using in-situ Liquid Stage Electron Microscopy. Microscopy and Microanalysis, 2013, 19, 412-413.	0.2	0
544	Optimization of Flowable Electrode for Electrochemical Flow Capacitors. ECS Meeting Abstracts, 2013, , .	0.0	0
545	Graphite Whiskers, Cones, andÂPolyhedral Crystals. Advanced Materials and Technologies, 2013, , 89-114.	0.4	0
546	Separation and liquid chromatography using a single carbon nanotube. Scientific Reports, 2012, 2, 510.	1.6	19
547	SiO <i>_x</i> Nanowire Assemblies Grown by Floating Catalyst Method. Materials Express, 2012, 2, 157-163.	0.2	12
548	Cytokine Removal: Hierarchical Porous Carbideâ€Derived Carbons for the Removal of Cytokines from Blood Plasma (Adv. Healthcare Mater. 6/2012). Advanced Healthcare Materials, 2012, 1, 682-682.	3.9	3
549	Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory. Physical Review B, 2012, 85, .	1.1	95
550	Effects of Surface Chemistry and Crystal Size on Raman Spectra of Nanodiamond. Microscopy and Microanalysis, 2012, 18, 1548-1549.	0.2	4
551	Advances in Surface Chemistry of Nanodiamond and Nanodiamond–Polymer Composites. , 2012, , 421-456.		11
552	Super-capacitors take charge in Germany. MRS Bulletin, 2012, 37, 802-803.	1.7	13
553	A capacity for change. MRS Bulletin, 2012, 37, 1000-1001.	1.7	5
554	Nanodiamond Reinforced PLLA Nanocomposites for Bone Tissue Engineering. , 2012, , .		0
555	In Situ Raman Spectroscopy of Oxidation of Carbon Nanomaterials. , 2012, , 291-351.		8
556	Maximizing Young's modulus of aminated nanodiamond-epoxy composites measured in compression. Polymer, 2012, 53, 5965-5971.	1.8	54
557	In Situ Electrochemical Dilatometry of Onion-Like Carbon and Carbon Black. Journal of the Electrochemical Society, 2012, 159, A1897-A1903.	1.3	56
558	Low Temperature Plasma Reforming of Hydrocarbon Fuels Into Hydrogen and Carbon Suboxide for Energy Generation Without \$hbox{CO}_{2}\$ Emission. IEEE Transactions on Plasma Science, 2012, 40, 1362-1370.	0.6	6

#	Article	IF	CITATIONS
559	Structural evolution of carbide-derived carbons upon vacuum annealing. Carbon, 2012, 50, 4880-4886.	5.4	55
560	Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces. ACS Nano, 2012, 6, 9818-9827.	7.3	151
561	A Non-Aqueous Asymmetric Cell with a Ti ₂ C-Based Two-Dimensional Negative Electrode. Journal of the Electrochemical Society, 2012, 159, A1368-A1373.	1.3	332
562	Low-temperature plasma-assisted preparation of graphene supported palladium nanoparticles with high hydrodesulfurization activity. Journal of Materials Chemistry, 2012, 22, 14363.	6.7	61
563	Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy and Environmental Science, 2012, 5, 6474.	15.6	431
564	Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 590-598.	1.7	19
565	Hierarchical Porous Carbideâ€Derived Carbons for the Removal of Cytokines from Blood Plasma. Advanced Healthcare Materials, 2012, 1, 796-800.	3.9	33
566	Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science. Journal of the American Ceramic Society, 2012, 95, 3699-3712.	1.9	59
567	Two-Dimensional Transition Metal Carbides. ACS Nano, 2012, 6, 1322-1331.	7. 3	3,453
568	First principles study of two-dimensional early transition metal carbides. MRS Communications, 2012, 2, 133-137.	0.8	429
569	Three-dimensional nanostructures from porous anodic alumina. MRS Communications, 2012, 2, 51-54.	0.8	1
570	Polymer Single Crystal-Decorated Superhydrophobic Buckypaper with Controlled Wetting and Conductivity. ACS Nano, 2012, 6, 1204-1213.	7.3	48
571	Multifrequency Imaging in the Intermittent Contact Mode of Atomic Force Microscopy: Beyond Phase Imaging. Small, 2012, 8, 1264-1269.	5.2	26
572	On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Materials, 2012, 11, 306-310.	13.3	861
573	Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1194-1199.	4.0	374
574	Nanoprobes for intracellular and single cell surfaceâ€enhanced Raman spectroscopy (SERS). Journal of Raman Spectroscopy, 2012, 43, 817-827.	1.2	64
575	The properties and applications of nanodiamonds. Nature Nanotechnology, 2012, 7, 11-23.	15.6	2,327
576	The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery. Advanced Energy Materials, 2012, 2, 895-902.	10.2	214

#	Article	IF	CITATIONS
577	Electrochemical Flow Cells: The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery (Adv. Energy Mater. 7/2012). Advanced Energy Materials, 2012, 2, 911-911.	10.2	4
578	Carbideâ€Derived Carbon Monoliths with Hierarchical Pore Architectures. Angewandte Chemie - International Edition, 2012, 51, 7577-7580.	7.2	131
579	Multifunctional magnetic rotator for micro and nanorheological studies. Review of Scientific Instruments, 2012, 83, 065110.	0.6	35
580	Tribological Properties of Nanodiamond-Epoxy Composites. Tribology Letters, 2012, 47, 195-202.	1.2	72
581	The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 2012, 50, 3267-3273.	5.4	250
582	Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon, 2012, 50, 3298-3309.	5.4	218
583	Bending single-walled carbon nanotubes into nanorings using a Pickering emulsion-based process. Carbon, 2012, 50, 1769-1775.	5.4	43
584	Editorial: Festschrift dedicated to Peter A. Thrower, Editor-in-Chief, 1972–2012. Carbon, 2012, 50, 3121-3122.	5.4	0
585	Ordered mesoporous carbide-derived carbons prepared by soft templating. Carbon, 2012, 50, 3987-3994.	5.4	46
586	Steric effects in adsorption of ions from mixed electrolytes into microporous carbon. Electrochemistry Communications, 2012, 15, 63-65.	2.3	61
587	MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16, 61-64.	2.3	1,252
588	Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials, 2012, 33, 5067-5075.	5.7	206
589	Not just graphene. Materials Today, 2012, 15, 6.	8.3	6
590	High power supercapacitor electrodes based on flexible TiC-CDC nano-felts. Journal of Power Sources, 2012, 201, 368-375.	4.0	93
591	Small-angle neutron scattering characterization of the structure of nanoporous carbons for energy-related applications. Microporous and Mesoporous Materials, 2012, 149, 46-54.	2.2	37
592	Continuous carbide-derived carbon films with high volumetric capacitance. Energy and Environmental Science, 2011, 4, 135-138.	15.6	168
593	Synthesis of quasi-oriented α-MoO3 nanobelts and nanoplatelets on TiO2 coated glass. Journal of Materials Chemistry, 2011, 21, 7931.	6.7	23
594	Synthesis of a new nanocrystalline titanium aluminum fluoride phase by reaction of Ti2AlC with hydrofluoric acid. RSC Advances, 2011, 1, 1493.	1.7	49

#	Article	IF	Citations
595	Carbon coated textiles for flexible energy storage. Energy and Environmental Science, 2011, 4, 5060.	15.6	486
596	Capacitive Energy Storage from \hat{a}^{3} 50 to 100 \hat{A}^{6} C Using an Ionic Liquid Electrolyte. Journal of Physical Chemistry Letters, 2011, 2, 2396-2401.	2.1	361
597	Strong Coupling of Cr and N in Cr–N-doped TiO2 and Its Effect on Photocatalytic Activity. Journal of Physical Chemistry C, 2011, 115, 17392-17399.	1.5	75
598	Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy and Environmental Science, 2011, 4, 3059.	15.6	558
599	Real-Time NMR Studies of Electrochemical Double-Layer Capacitors. Journal of the American Chemical Society, 2011, 133, 19270-19273.	6.6	145
600	Microporous Carbon-Based Electrical Double Layer Capacitor Operating at High Temperature in Ionic Liquid Electrolyte. Electrochemical and Solid-State Letters, 2011, 14, A174.	2.2	54
601	Preventing Sodium Poisoning of Photocatalytic TiO ₂ Films on Glass by Metal Doping. International Journal of Applied Glass Science, 2011, 2, 108-116.	1.0	23
602	Covalent Incorporation of Aminated Nanodiamond into an Epoxy Polymer Network. ACS Nano, 2011, 5, 7494-7502.	7.3	262
603	Carbon Coated Textiles for Flexible Energy Storage in Smart Garments. ECS Meeting Abstracts, 2011, , .	0.0	0
604	Ultrasmall Gold Nanoparticles with the Size Controlled by the Pores of Carbide-Derived Carbon. Materials Express, 2011, 1, 259-266.	0.2	5
605	Effect of Calcination Temperature and Environment on Photocatalytic and Mechanical Properties of Ultrathin Sol-Gel Titanium Dioxide Films. Journal of the American Ceramic Society, 2011, 94, 1101-1108.	1.9	13
606	On the Topotactic Transformation of <scp><scp>Ti₂AlC</scp></scp> into a <scp><scp>Tiâ€"Câ€"Oâ€"F</scp></scp> Cubic Phase by Heating in Molten Lithium Fluoride in Air. Journal of the American Ceramic Society, 2011, 94, 4556-4561.	1.9	91
607	Multifunctional carbon-nanotube cellular endoscopes. Nature Nanotechnology, 2011, 6, 57-64.	15.6	214
608	Rapid assembly of carbon nanotube-based magnetic composites. Materials Chemistry and Physics, 2011, 128, 514-518.	2.0	16
609	In situ electrochemical dilatometry of carbide-derived carbons. Electrochemistry Communications, 2011, 13, 1221-1224.	2.3	76
610	True Performance Metrics in Electrochemical Energy Storage. Science, 2011, 334, 917-918.	6.0	2,057
611	Controlling Graphene Properties Through Chemistry. Journal of Physical Chemistry Letters, 2011, 2, 2509-2510.	2.1	52
612	Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon. Microporous and Mesoporous Materials, 2011, 144, 105-112.	2.2	94

#	Article	IF	Citations
613	Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials, 2011, 32, 87-94.	5.7	352
614	Carbon Nanotubeâ€Tipped Endoscope for In Situ Intracellular Surfaceâ€Enhanced Raman Spectroscopy. Small, 2011, 7, 540-545.	5.2	54
615	Carbideâ€Derived Carbons – From Porous Networks to Nanotubes and Graphene. Advanced Functional Materials, 2011, 21, 810-833.	7.8	585
616	"Brickâ€andâ€Mortar―Selfâ€Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Advanced Functional Materials, 2011, 21, 2208-2215.	7.8	98
617	Twoâ€Dimensional Nanocrystals Produced by Exfoliation of Ti ₃ AlC ₂ . Advanced Materials, 2011, 23, 4248-4253.	11.1	7,931
618	Flexible Nanoâ€felts of Carbideâ€Derived Carbon with Ultraâ€high Power Handling Capability. Advanced Energy Materials, 2011, 1, 423-430.	10.2	172
619	John E. (Jack) Fischer, June 8, 1939–June 28, 2011. Carbon, 2011, 49, 4075-4076.	5.4	0
620	Mechanical properties of epoxy composites with high contents of nanodiamond. Composites Science and Technology, 2011, 71, 710-716.	3.8	174
621	Quasielastic neutron scattering study of water confined in carbon nanopores. Europhysics Letters, 2011, 95, 56001.	0.7	24
622	Correlating magnetotransport and diamagnetism of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mn>2</mml:mn> carbon networks through the metal-insulator transition. Physical Review B, 2011, 84, .</mml:msup></mml:mrow></mml:math>	/mml:msu	p> ²⁷ mml:mrc
623	Fabrics Capable of Capacitive Energy Storage. , 2011, , .		O
624	PLLA-Nanodiamond Composites and Their Application in Bone Tissue Engineering. , 2010, , .		1
625	Materials for electrochemical capacitors. , 2010, , 138-147.		25
626	Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors. Science, 2010, 328, 480-483.	6.0	1,206
627	Qualitative Electrochemical Impedance Spectroscopy study of ion transport into sub-nanometer carbon pores in Electrochemical Double Layer Capacitor electrodes. Electrochimica Acta, 2010, 55, 7489-7494.	2.6	156
628	Titanium dioxide-coated nanofibers for advanced filters. Journal of Nanoparticle Research, 2010, 12, 2511-2519.	0.8	42
629	Recent Advances in Understanding the Capacitive Storage in Microporous Carbons. Fuel Cells, 2010, 10, 819-824.	1.5	36
630	Copper Azide Confined Inside Templated Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 3168-3174.	7.8	73

#	Article	IF	Citations
631	Enhanced volumetric hydrogen and methane storage capacity of monolithic carbide-derived carbon. Microporous and Mesoporous Materials, 2010, 131, 423-428.	2.2	70
632	Mesoporous carbide-derived carbon for cytokine removal from blood plasma. Biomaterials, 2010, 31, 4789-4794.	5.7	46
633	Impact of synthesis conditions on surface chemistry and structure of carbide-derived carbons. Thermochimica Acta, 2010, 497, 137-142.	1.2	42
634	Carbide-derived-carbons with hierarchical porosity from a preceramic polymer. Carbon, 2010, 48, 201-210.	5.4	89
635	Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon, 2010, 48, 1116-1123.	5.4	172
636	Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology, 2010, 5, 651-654.	15.6	2,451
637	Surface-Enhanced Raman Spectroscopy as a Tool for Detecting Ca2+Mobilizing Second Messengers in Cell Extracts. Analytical Chemistry, 2010, 82, 6770-6774.	3.2	28
638	Simulations of large multi-atom vacancies in diamond. Diamond and Related Materials, 2010, 19, 1153-1162.	1.8	7
639	Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. Journal of Materials Research, 2010, 25, 1525-1531.	1.2	142
640	Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3457-3467.	1.6	233
641	Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling. ACS Applied Materials & Lamp; Interfaces, 2010, 2, 3289-3294.	4.0	147
642	High-Temperature Rubber Made from Carbon Nanotubes. Science, 2010, 330, 1332-1333.	6.0	62
643	The Study on PLLA-Nanodiamond Composites for Surgical Fixation Devices. , 2010, , .		0
644	Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Physical Chemistry Chemical Physics, 2010, 12, 14017.	1.3	11
645	Small diameter carbon nanopipettes. Nanotechnology, 2010, 21, 015304.	1.3	69
646	Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors. Journal of the Electrochemical Society, 2009, 156, A7.	1.3	231
647	Pseudocapacitive Behavior of Carbon Nanoparticles Modified by Phosphomolybdic Acid. Journal of the Electrochemical Society, 2009, 156, A921.	1.3	49
648	Low-cost Supercapacitors for Household Electrical Energy Storage and Harvesting. ECS Transactions, 2009, 16, 13-21.	0.3	1

#	Article	IF	Citations
649	Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte. Journal of the Electrochemical Society, 2009, 156, A1.	1.3	106
650	Localized Synthesis of Metal Nanoparticles Using Nanoscale Corona Discharge in Aqueous Solutions. Advanced Materials, 2009, 21, 4039-4044.	11.1	29
651	Effects of Deposition Conditions on the Structure and Chemical Properties of Carbon Nanopipettes. Chemical Vapor Deposition, 2009, 15, 204-208.	1.4	21
652	Manufacturing Nanosized Fenofibrate by Salt Assisted Milling. Pharmaceutical Research, 2009, 26, 1365-1370.	1.7	31
653	Molybdenum carbide-derived carbon for hydrogen storage. Microporous and Mesoporous Materials, 2009, 120, 267-271.	2.2	33
654	Solvent effect on the ion adsorption from ionic liquid electrolyte into sub-nanometer carbon pores. Electrochimica Acta, 2009, 54, 7025-7032.	2.6	181
655	Importance of pore size in high-pressure hydrogen storage by porous carbons. International Journal of Hydrogen Energy, 2009, 34, 6314-6319.	3.8	212
656	Nitrogen modified carbide-derived carbons as adsorbents of hydrogen sulfide. Journal of Colloid and Interface Science, 2009, 330, 60-66.	5.0	27
657	Enhanced methane storage of chemically and physically activated carbide-derived carbon. Journal of Power Sources, 2009, 191, 560-567.	4.0	111
658	Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide. Journal of Solid State Chemistry, 2009, 182, 1733-1741.	1.4	60
659	Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon, 2009, 47, 1969-1976.	5.4	109
660	Phonon confinement effects in the Raman spectrum of nanodiamond. Physical Review B, 2009, 80, .	1.1	200
661	<i>In Situ</i> Intracellular Spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-Enabled Nanopipettes. ACS Nano, 2009, 3, 3529-3536.	7.3	137
662	Deformation of Carbon Nanotubes by Exposure to Water Vapor. Langmuir, 2009, 25, 2804-2810.	1.6	42
663	An <i>in situ</i> Raman spectroscopy study of stress transfer between carbon nanotubes and polymer. Nanotechnology, 2009, 20, 335703.	1.3	83
664	Purification of carbon nanotubes by dynamic oxidation in air. Journal of Materials Chemistry, 2009, 19, 7904.	6.7	54
665	Capacitance of KOH activated carbide-derived carbons. Physical Chemistry Chemical Physics, 2009, 11, 4943.	1.3	89
666	Wet Chemistry Route to Hydrophobic Blue Fluorescent Nanodiamond. Journal of the American Chemical Society, 2009, 131, 4594-4595.	6.6	381

#	Article	IF	Citations
667	Nanodiamond-Polymer Composite Fibers and Coatings. ACS Nano, 2009, 3, 363-369.	7.3	278
668	Contribution of Functional Groups to the Raman Spectrum of Nanodiamond Powders. Chemistry of Materials, 2009, 21, 273-279.	3.2	240
669	3-D Scanning Transmission Electron Microscopy of Carbide-Derived Carbons for Electrical Energy Storage. Microscopy and Microanalysis, 2009, 15, 632-633.	0.2	0
670	Materials for electrochemical capacitors. , 2009, , 320-329.		205
671	Carbide-Derived Carbons and Templated Carbons. Advanced Materials and Technologies, 2009, , 77-113.	0.4	3
672	Carbothermal Synthesis of αâ€SiC Microâ€Ribbons. Journal of the American Ceramic Society, 2008, 91, 83-87.	1.9	16
673	Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluidics and Nanofluidics, 2008, 5, 289-305.	1.0	240
674	SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles. Journal of Raman Spectroscopy, 2008, 39, 61-67.	1.2	74
675	Bactericidal activity of chlorineâ€loaded carbideâ€derived carbon against <i>Escherichia coli</i> and <i>Bacillus anthracis</i> Journal of Biomedical Materials Research - Part A, 2008, 84A, 607-613.	2.1	6
676	Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double‣ayer Theory. Angewandte Chemie - International Edition, 2008, 47, 3392-3395.	7.2	569
677	Transparent Thin Films of Multiwalled Carbon Nanotubes Selfâ€Assembled on Polyamide 11 Nanofibers. Advanced Functional Materials, 2008, 18, 2322-2327.	7.8	45
678	Micro and mesoporosity of carbon derived from ternary and binary metal carbides. Microporous and Mesoporous Materials, 2008, 112, 526-532.	2.2	108
679	Enhanced volumetric hydrogen storage capacity of porous carbon powders by forming peels or pellets. Microporous and Mesoporous Materials, 2008, 116, 469-472.	2.2	24
680	Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon, 2008, 46, 841-849.	5 . 4	123
681	Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochimica Acta, 2008, 53, 7675-7680.	2.6	114
682	Field controlled nematic-to-isotropic phase transition in liquid crystal–carbon nanotube composites. Journal of Applied Physics, 2008, 103, 064314.	1,1	29
683	Materials for electrochemical capacitors. Nature Materials, 2008, 7, 845-854.	13.3	14,090
684	Carbide-derived carbon membrane. Materials Chemistry and Physics, 2008, 112, 587-591.	2.0	18

#	Article	IF	CITATIONS
685	Effect of Carbon Particle Size on Electrochemical Performance of EDLC. Journal of the Electrochemical Society, 2008, 155, A531.	1.3	173
686	Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society, 2008, 130, 2730-2731.	6.6	2,066
687	Nanoscale Corona Discharge in Liquids, Enabling Nanosecond Optical Emission Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 8020-8024.	7.2	63
688	Increase of nanodiamond crystal size by selective oxidation. Diamond and Related Materials, 2008, 17, 1122-1126.	1.8	65
689	Smoothing of nanoscale roughness based on the Kelvin effect. Nanotechnology, 2008, 19, 365702.	1.3	6
690	Self-assembly of carbon nanotube polyhedrons inside microchannels. Chemical Communications, 2008, , 2747.	2.2	9
691	Carbon nanopipettes characterize calcium release pathways in breast cancer cells. Nanotechnology, 2008, 19, 325102.	1.3	35
692	Laser-induced light emission from carbon nanoparticles. Journal of Applied Physics, 2008, 104, .	1.1	30
693	Magnetostatic interactions between carbon nanotubes filled with magnetic nanoparticles. Applied Physics Letters, 2008, 92, 233117.	1.5	43
694	Carbon Nanotube Tipped Cellular Probes. ECS Meeting Abstracts, 2008, MA2008-01, 1021-1021.	0.0	0
695	Charge Storage Mechanism in Sub-Nanometer Pores and its Consequence for Electrical Double Layer Capacitors. ECS Meeting Abstracts, 2008, , .	0.0	2
696	Surface-Enhanced Raman Spectroscopy Analysis of Cell Components. , 2008, , .		0
697	Interface Modifications of Carbon-based Supercapacitor Electrodes. ECS Transactions, 2007, 3, 49-59.	0.3	0
698	Induction and measurement of minute flow rates through nanopipes. Physics of Fluids, 2007, 19, 013603.	1.6	46
699	MICRO- AND NANOSCALE GRAPHITE CONES AND TUBES FROM HACKMAN VALLEY, KOLA PENINSULA, RUSSIA. Canadian Mineralogist, 2007, 45, 379-389.	0.3	27
700	The Effect of Deformation on Room Temperature Coulomb Blockade using Conductive Carbon Nanotubes. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4206-10.	0.5	2
701	Self-assembled Multi-walled Carbon Nanotube Coatings. Materials Research Society Symposia Proceedings, 2007, 1057, 1.	0.1	1
702	Multifunctional carbon nanotubes with nanoparticles embedded in their walls. Nanotechnology, 2007, 18, 155305.	1.3	33

#	Article	IF	CITATIONS
703	High Temperature Functionalization and Surface Modification of Nanodiamond Powders. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	9
704	Magnetically assembled carbon nanotube tipped pipettes. Applied Physics Letters, 2007, 90, 103108.	1.5	65
705	Plasma pressure compaction of nanodiamond. Diamond and Related Materials, 2007, 16, 1967-1973.	1.8	18
706	Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers. Advanced Functional Materials, 2007, 17, 2918-2924.	7.8	55
707	Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. Journal of Raman Spectroscopy, 2007, 38, 728-736.	1.2	537
708	Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon, 2007, 45, 2511-2518.	5.4	659
709	The mechanical properties of lithium tetraborate (100), (011) and (112) faces. Materials Letters, 2007, 61, 770-773.	1.3	5
710	New solvent for polyamides and its application to the electrospinning of polyamides 11 and 12. Polymer, 2007, 48, 6617-6621.	1.8	56
711	Effect of Graphitization on the Wettability and Electrical Conductivity of CVD-Carbon Nanotubes and Films. Journal of Physical Chemistry B, 2006, 110, 9850-9855.	1.2	193
712	Coelectrospinning of Carbon Nanotube Reinforced Nanocomposite Fibrils. ACS Symposium Series, 2006, , 231-245.	0.5	5
713	Carbon Nanotube ReinforcedBombyx moriSilk Nanofibers by the Electrospinning Process. Biomacromolecules, 2006, 7, 208-214.	2.6	218
714	In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes. Chemistry of Materials, 2006, 18, 1525-1533.	3.2	161
715	Wetting of CVD Carbon Films by Polar and Nonpolar Liquids and Implications for Carbon Nanopipes. Langmuir, 2006, 22, 1789-1794.	1.6	75
716	Anisotropic Etching of SiC Whiskers. Nano Letters, 2006, 6, 548-551.	4.5	93
717	Carbide-Derived Carbons:Â A Comparative Study of Porosity Based on Small-Angle Scattering and Adsorption Isotherms. Langmuir, 2006, 22, 8945-8950.	1.6	79
718	Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science, 2006, 313, 1760-1763.	6.0	3,404
719	Carbide-Derived Carbon. , 2006, , .		6
720	Parameterization of a Piezoelectric Nanomanipulation Device., 2006,,.		3

#	Article	IF	CITATIONS
721	Synthesis and Tribology of Carbide-Derived Carbon Films. International Journal of Applied Ceramic Technology, 2006, 3, 236-244.	1.1	20
722	Formation of Porous SiC Ceramics by Pyrolysis of Wood Impregnated with Silica. International Journal of Applied Ceramic Technology, 2006, 3, 485-490.	1.1	39
723	Formation of Carbide-Derived Carbon on beta-Silicon Carbide Whiskers. Journal of the American Ceramic Society, 2006, 89, 509-514.	1.9	92
724	Detection of Indentation Induced FE-to-AFE Phase Transformation in Lead Zirconate Titanate. Journal of the American Ceramic Society, 2006, 89, 3557-3559.	1.9	10
725	Titanium carbide derived nanoporous carbon for energy-related applications. Carbon, 2006, 44, 2489-2497.	5.4	351
726	Carbon structures in silicon carbide derived carbon. Journal of Materials Processing Technology, 2006, 179, 11-22.	3.1	94
727	Effect of pore size and surface area of carbide derived carbons on specific capacitance. Journal of Power Sources, 2006, 158, 765-772.	4.0	591
728	Control of sp2/sp3Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. Journal of the American Chemical Society, 2006, 128, 11635-11642.	6.6	809
729	Effect of Thermal Treatment on the Structure of Multi-walled Carbon Nanotubes. Journal of Nanoparticle Research, 2006, 8, 615-625.	0.8	197
730	Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Biomaterials, 2006, 27, 5755-5762.	5.7	119
731	Carbide-Derived Carbons: Effect of Pore Size on Hydrogen Uptake and Heat of Adsorption. Advanced Functional Materials, 2006, 16, 2288-2293.	7.8	379
732	Simulations of Multi-atom Vacancies in Diamond. Materials Research Society Symposia Proceedings, 2006, 978, .	0.1	0
733	Imaging of liquid crystals confined in carbon nanopipes. Applied Physics Letters, 2006, 89, 043123.	1.5	8
734	Graphite Whiskers, Cones, and Polyhedral Crystals. Advanced Materials and Technologies, 2006, , 149-174.	0.4	2
735	Carbide-Derived Carbon. Advanced Materials and Technologies, 2006, , 211-254.	0.4	9
736	Graphite Whiskers, Cones, and Polyhedral Crystals., 2006,,.		2
737	Graphite Whiskers, Cones, and Polyhedral Crystals. Advanced Materials and Technologies, 2006, , 109-134.	0.4	0
738	THE STRUCTURAL EFFECTS ON MULTI-WALLED CARBON NANOTUBES BY THERMAL ANNEALING UNDER VACUUM. , 2006, , 45-46.		0

#	Article	IF	Citations
739	Oxidation behaviour of an aluminium nitride–hafnium diboride ceramic composite. Journal of the European Ceramic Society, 2005, 25, 1789-1796.	2.8	13
740	Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide. Microporous and Mesoporous Materials, 2005, 86, 50-57.	2.2	161
741	Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide. Carbon, 2005, 43, 2075-2082.	5.4	139
742	Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chemical Physics Letters, 2005, 402, 422-427.	1.2	201
743	Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage. Journal of the American Chemical Society, 2005, 127, 16006-16007.	6.6	318
744	Materials science in secondary education: Non-MRSEC initiatives. Nature Materials, 2005, 4, 357-357.	13.3	1
745	SiC Nanowires Synthesized from Electrospun Nanofiber Templates. Advanced Materials, 2005, 17, 1531-1535.	11.1	126
746	Guiding water into carbon nanopipes with the aid of bipolar electrochemistry. Microfluidics and Nanofluidics, 2005, 1, 284-288.	1.0	36
747	Electron microscope vualization of muliphase fluids contained in closed carbon nanotubes. Journal of Visualization, 2005, 8, 137-144.	1.1	4
748	Nano-structured carbide-derived carbon films and their tribology. Tsinghua Science and Technology, 2005, 10, 699-703.	4.1	28
749	Dielectrophoretic Assembly of Carbon Nanofiber Nanoelectromechanical Devices. IEEE Nanotechnology Magazine, 2005, 4, 570-575.	1.1	12
750	Theoretical and experimental investigation of aqueous liquids contained in carbon nanotubes. Journal of Applied Physics, 2005, 97, 124309.	1.1	30
751	Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology, 2005, 16, 567-571.	1.3	25
752	Systems-level questions in Drosophila oogenesis. IET Systems Biology, 2005, 152, 276.	2.0	12
753	Double-Layer Capacitance of Carbide Derived Carbons in Sulfuric Acid. Electrochemical and Solid-State Letters, 2005, 8, A357.	2.2	79
754	Synthesis of Carbide-Derived Carbon by Chlorination of Ti2AlC. Chemistry of Materials, 2005, 17, 2317-2322.	3.2	87
755	Effect of sintering on structure of nanodiamond. Diamond and Related Materials, 2005, 14, 1721-1729.	1.8	106
756	Carbon Nanotubes Loaded with Magnetic Particles. Nano Letters, 2005, 5, 879-884.	4.5	393

#	Article	IF	CITATIONS
757	Is there a link between very high strain and metastable phases in semiconductors: cases of Si and GaAs?. Journal of Physics Condensed Matter, 2004, 16, S39-S47.	0.7	2
758	Controlling dissociative adsorption for effective growth of carbon nanotubes. Applied Physics Letters, 2004, 85, 3265-3267.	1.5	41
759	Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: A statistical study. Journal of Materials Research, 2004, 19, 3099-3108.	1.2	91
760	GaN nanoindentation: A micro-Raman spectroscopy study of local strain fields. Journal of Applied Physics, 2004, 96, 2853-2856.	1.1	62
761	Effect of Carrier Gas on the Growth Rate, Growth Density, and Structure of Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2004, 818, 84.	0.1	4
762	Testing Multiwall Carbon Nanotubes on Ion Erosion for Advanced Space Propulsion. Materials Research Society Symposia Proceedings, 2004, 821, 147.	0.1	7
763	Whiskerisation of polycrystalline SiC fibres during synthesis. Advances in Applied Ceramics, 2004, 103, 193-196.	0.4	14
764	Wall structure and surface chemistry of hydrothermal carbon nanofibres. Nanotechnology, 2004, 15, 232-236.	1.3	40
765	Synthesis of Boron Nitride Coating on Carbon Nanotubes. Journal of the American Ceramic Society, 2004, 87, 147-151.	1.9	43
766	Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon, 2004, 42, 1435-1445.	5.4	148
767	Microporous carbon derived from boron carbide. Microporous and Mesoporous Materials, 2004, 72, 203-208.	2.2	122
768	Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films. Surface and Coatings Technology, 2004, 188-189, 588-593.	2.2	46
769	Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectronic Engineering, 2004, 75, 31-42.	1.1	100
770	Structural damage in boron carbide under contact loading. Acta Materialia, 2004, 52, 3921-3927.	3.8	132
771	Raman scattering of non–planar graphite: arched edges, polyhedral crystals, whiskers and cones. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2289-2310.	1.6	211
772	Thermal stability of metastable silicon phases produced by nanoindentation. Journal of Applied Physics, 2004, 95, 2725-2731.	1.1	74
773	Environmental Scanning Electron Microscopy Study of Water in Carbon Nanopipes. Nano Letters, 2004, 4, 989-993.	4. 5	202
774	Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers. Applied Physics Letters, 2004, 85, 1775-1777.	1.5	152

#	Article	IF	CITATIONS
775	Observation of Water Confined in Nanometer Channels of Closed Carbon Nanotubes. Nano Letters, 2004, 4, 2237-2243.	4.5	239
776	Synthesis of graphite by chlorination of iron carbide at moderate temperatures. Journal of Materials Chemistry, 2004, 14, 238.	6.7	101
777	In situ ESEM Study of Liquid Transport through Carbon Nanopipes. Microscopy and Microanalysis, 2004, 10, 1054-1055.	0.2	1
778	TEM Observation of Water Confined in Carbon Nanotubes. Microscopy and Microanalysis, 2004, 10, 366-367.	0.2	2
779	Evaporative Transport of Aqueous Liquid in a Closed Carbon Nanotube: A Nano Heat Pipe?. Journal of Heat Transfer, 2004, 126, 506-506.	1.2	3
780	In Situ ESEM Study of Liquid Interactions With Carbon Nanopipes. , 2004, , 369.		0
781	Carbothermal Synthesis of Alâ€Oâ€N Coatings Increasing Strength of SiC Fibers. International Journal of Applied Ceramic Technology, 2004, 1, 68-75.	1.1	6
782	Calculation of the Density Profile of Liquid Located in the Multi-Walled Carbon Nanotube. , 2004, , 23-30.		0
783	Title is missing!. Tribology Letters, 2003, 15, 51-55.	1.2	51
784	Elastic-plastic contact mechanics of indentations accounting for phase transformations. Experimental Mechanics, 2003, 43, 303-308.	1.1	6
785	How safe are nanotubes and other nanofilaments?. Materials Research Innovations, 2003, 7, 192-194.	1.0	43
786	Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns. Advanced Materials, 2003, 15, 1161-1165.	11.1	716
786 787			716 96
	1161-1165.	11.1	
787	Naturally occurring graphite cones. Carbon, 2003, 41, 2085-2092. Carbothermal Synthesis of Boron Nitride Coatings on Silicon Carbide. Journal of the American	11.1 5.4	96
787 788	Naturally occurring graphite cones. Carbon, 2003, 41, 2085-2092. Carbothermal Synthesis of Boron Nitride Coatings on Silicon Carbide. Journal of the American Ceramic Society, 2003, 86, 1830-1837.	11.1 5.4 1.9	96
787 788 789	Naturally occurring graphite cones. Carbon, 2003, 41, 2085-2092. Carbothermal Synthesis of Boron Nitride Coatings on Silicon Carbide. Journal of the American Ceramic Society, 2003, 86, 1830-1837. Nanoporous carbide-derived carbon with tunable pore size. Nature Materials, 2003, 2, 591-594. High-resolution transmission electron microscopy study of metastable silicon phases produced by	11.1 5.4 1.9	96 41 653

#	Article	IF	CITATIONS
793	Scanning Electron Microscopy and X-Ray Microanalysis. J. Goldstein, D. Newbury, D. Joy, C, Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael. Kluwer Academic, Plenum Publishers, New York; 2003, 688 pages (Hardback, \$75.00) ISBN 0-306-47292-9. Microscopy and Microanalysis, 2003, 9, 484-484.	0.2	6
794	Numerical Derivative Analysis of Load-Displacement Curves in Depth-Sensing Indentation. Materials Research Society Symposia Proceedings, 2003, 791, 268.	0.1	2
795	Effect of indentation unloading conditions on phase transformation induced events in silicon. Journal of Materials Research, 2003, 18, 1192-1201.	1.2	109
796	Fluid Transport and Phase Transition Experiments in Closed Multiwall Carbon Nanotubes., 2003,, 845.		0
797	In-situ TEM Study of Thermal Stabilities of Metastable Silicon Phases. Microscopy and Microanalysis, 2003, 9, 484-485.	0.2	5
798	Opening Multiwall Carbon Nanotubes in a Transmission Electron Microscope. Microscopy and Microanalysis, 2003, 9, 348-349.	0.2	0
799	Tribological Characterization of Carbide-Derived Carbon (CDC) Films in Dry and Humid Environments. , 2003, , 119-130.		3
800	Mechanically stable insoluble titanium-lead anodes for sulfate electrolytes. Science of Sintering, 2003, 35, 75-83.	0.5	4
801	Attoliter fluid experiments in individual closed-end carbon nanotubes: Liquid film and fluid interface dynamics. Physics of Fluids, 2002, 14, L5-L8.	1.6	77
802	Nanoindentation and Raman spectroscopy studies of boron carbide single crystals. Applied Physics Letters, 2002, 81, 3783-3785.	1.5	152
803	Phase Transformations in Silicon Under Dry and Lubricated Sliding. Tribology Transactions, 2002, 45, 372-380.	1.1	54
804	Raman Mapping Devoted to the Phase Transformation and Strain Analysis in Si Micro-Indentation. Advanced Engineering Materials, 2002, 4, 543-546.	1.6	7
805	Analysis of non-planar graphitic structures: from arched edge planes of graphite crystals to nanotubes. Materials Research Innovations, 2002, 5, 191-200.	1.0	103
806	Ferroelasticity and hysteresis in LaCoO3 based perovskites. Acta Materialia, 2002, 50, 715-723.	3.8	58
807	Conical crystals of graphite. Carbon, 2002, 40, 2263-2267.	5.4	85
808	In situ chemical experiments in carbon nanotubes. Chemical Physics Letters, 2002, 365, 354-360.	1.2	103
809	Stress–strain State of Multiwall Carbon Nanotube Under Internal Pressure. Journal of Nanoparticle Research, 2002, 4, 207-214.	0.8	21
810	Carbon Nanotubes Under Internal Pressure. , 2002, , 59-74.		0

#	Article	IF	CITATIONS
811	Formation of Nanostructured Carbons under Hydrothermal Conditions. , 2002, , 253-264.		1
812	Formation of Nanostructured Carbons under Hydrothermal Conditions. , 2002, , 253-264.		0
813	In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Applied Physics Letters, 2001, 79, 1021-1023.	1.5	250
814	Model of oxide scale growth on Si3N4 ceramics: nitrogen diffusion through oxide scale and pore formation. Computational Materials Science, 2001, 21, 79-85.	1.4	9
815	Designing Carbon Crystals for Nanotechnology Applications. Crystal Growth and Design, 2001, 1, 179-181.	1.4	8
816	Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon. Semiconductor Science and Technology, 2001, 16, 345-352.	1.0	115
817	A Novel Class of Carbon Nanocones. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	7
818	5. High-pressure surface science. Experimental Methods in the Physical Sciences, 2001, 38, 355-445.	0.1	10
819	Carbon coatings produced by high temperature chlorination of silicon carbide ceramics. Materials Research Innovations, 2001, 5, 55-62.	1.0	91
820	Behavior of C60 under Hydrothermal Conditions: Transformation to Amorphous Carbon and Formation of Carbon Nanotubes. Journal of Solid State Chemistry, 2001, 160, 184-188.	1.4	33
821	Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon, 2001, 39, 1307-1318.	5.4	102
822	Decomposition of silicon carbide in the presence of organic compounds under hydrothermal conditions. Carbon, 2001, 39, 1763-1766.	5.4	51
823	Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature, 2001, 411, 283-287.	13.7	238
824	Platinum Reactions with Carbon Coatings Produced by High Temperature Chlorination of Silicon Carbide. Journal of the Electrochemical Society, 2001, 148, C774.	1.3	19
825	Pressure-Induced Phase Transformations In Semiconductors Under Contact Loading. , 2001, , 291-302.		4
826	Nanostructured Carbon Coatings on Silicon Carbide: Experimental and Theoretical Study., 2001,, 239-255.		11
827	HIGH-PRESSURE SURFACE SCIENCE., 2001,, 195-237.		5
828	Identification of Pressure-Induced Phase Transformations Using Nanoindentation. Materials Research Society Symposia Proceedings, 2000, 649, 891.	0.1	8

#	Article	IF	CITATIONS
829	<i>In-situ</i> Fluid Experiments in Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 741.	0.1	10
830	Tribological Properties of Carbon Coatings Produced by High Temperature Chlorination of Silicon Carbide. Tribology Transactions, 2000, 43, 809-815.	1.1	41
831	Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Applied Physics Letters, 2000, 76, 2214-2216.	1.5	352
832	Cyclic Nanoindentation and Raman Microspectroscopy Study of Phase Transformations in Semiconductors. Journal of Materials Research, 2000, 15, 871-879.	1.2	167
833	Graphite Polyhedral Crystals. Science, 2000, 290, 317-320.	6.0	195
834	Hydrothermal synthesis of multiwall carbon nanotubes. Journal of Materials Research, 2000, 15, 2591-2594.	1.2	177
835	Nanostructured Carbon Coatings. , 2000, , 25-40.		0
836	Transformation of diamond to graphite. Nature, 1999, 401, 663-664.	13.7	163
837	Surfactant-mediated growth of Ge/Si(001) studied by Raman spectroscopy and TEM. Journal of Crystal Growth, 1999, 201-202, 538-541.	0.7	10
838	Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. Journal of Raman Spectroscopy, 1999, 30, 939-946.	1.2	154
839	Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon. Semiconductor Science and Technology, 1999, 14, 936-944.	1.0	212
840	Microindentation device for in situ study of pressure-induced phase transformations. Review of Scientific Instruments, 1999, 70, 4612-4617.	0.6	24
841	Formation of filamentous carbon from paraformaldehyde under high temperatures and pressures. Carbon, 1998, 36, 937-942.	5.4	31
842	Hydrothermal behavior of diamond. Diamond and Related Materials, 1998, 7, 1459-1465.	1.8	22
843	Pressure-induced phase transformations in diamond. Journal of Applied Physics, 1998, 84, 1299-1304.	1.1	109
844	Phase Transformations in Semiconductors Under Contact Loading. , 1998, , 431-442.		9
845	Structure and Properties of SiC-TiB 2 Ceramics. Journal of Materials Processings and Manufacturing Science, 1998, 7, 99-110.	0.1	6
846	Phase transformations of silicon caused by contact loading. Journal of Applied Physics, 1997, 81, 3057-3063.	1.1	354

#	Article	IF	CITATIONS
847	Carbon coatings on silicon carbide by reaction with chlorine-containing gases. Journal of Materials Chemistry, 1997, 7, 1841-1848.	6.7	126
848	Formation of sp3-bonded carbon upon hydrothermal treatment of SiC. Diamond and Related Materials, 1996, 5, 151-162.	1.8	59
849	Structure of carbon produced by hydrothermal treatment of \hat{l}^2 -SiC powder. Journal of Materials Chemistry, 1996, 6, 595-604.	6.7	87
850	Degradation of SiC (Tyranno) fibres in high-temperature, high-pressure water. Journal of Materials Science Letters, 1995, 14, 755.	0.5	6
851	Low-Temperature Oxidation, Hydrothermal Corrosion, and Their Effects on Properties of SiC (Tyranno) Fibers. Journal of the American Ceramic Society, 1995, 78, 1439-1450.	1.9	52
852	Identification of oxidation mechanisms in silicon nitride ceramics by transmission electron microscopy studies of oxide scales. Journal of Materials Research, 1995, 10, 2306-2321.	1.2	33
853	Hydrothermal synthesis of diamond from diamond-seeded \hat{l}^2 -SiC powder. Journal of Materials Chemistry, 1995, 5, 2313-2314.	6.7	37
854	Thermodynamic and experimental study of carbon formation on carbides under hydrothermal conditions. Journal of Materials Chemistry, 1995, 5, 595.	6.7	63
855	Particulate silicon nitride-based composites. Journal of Materials Science, 1994, 29, 2541-2556.	1.7	152
856	Oxidation and properties degradation of SiC fibres below 850 i;½C. Journal of Materials Science Letters, 1994, 13, 680-683.	0.5	24
857	Degradation of SiC-based fibres in high-temperature, high-pressure water. Journal of Materials Science Letters, 1994, 13, 395-399.	0.5	13
858	Improvement of oxidation behaviour of dense silicon nitride by surface modification. Journal of the European Ceramic Society, 1994, 13, 239-246.	2.8	4
859	Formation of carbon films on carbides under hydrothermal conditions. Nature, 1994, 367, 628-630.	13.7	187
860	Investigation of the mechanical properties of materials of the system Al2O3-ZrO2-TiN. Powder Metallurgy and Metal Ceramics, 1993, 32, 541-543.	0.4	1
861	Oxidation behavior of monolithic TiN and TiN dispersed in ceramic matrices. Oxidation of Metals, 1993, 39, 69-91.	1.0	29
862	Creep of silicon nitride-titanium nitride composites. Journal of Materials Science, 1993, 28, 4279-4287.	1.7	26
863	Stress-Enhanced Oxidation of Silicon Nitride Ceramics. Journal of the American Ceramic Society, 1993, 76, 3093-3104.	1.9	27
864	The oxidation of particulate-reinforced Si3N4-TiN composites. Corrosion Science, 1992, 33, 627-640.	3.0	46

#	Article	IF	Citations
865	Oxidation resistance of boron carbide-based ceramics. Journal of Materials Science Letters, 1992, 11, 308-310.	0.5	30
866	Tribochemical interactions of boron carbides against steel. Wear, 1992, 154, 133-140.	1.5	52
867	Effect of oxygen on the strength of reaction-bonded silicon nitride. Refractories, 1991, 32, 233-235.	0.0	0
868	Influence of batch preparation method on the structure and properties of ceramics in the Al2O3-ZrO2-Y2O3 system. Refractories, 1991, 32, 271-276.	0.0	0
869	Structure and properties of hot-pressed material based on silicon nitride. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1991, 30, 840-844.	0.1	0
870	Influence of oxidation on the strength of hot-pressed silicon nitride ceramic at high temperatures. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1991, 30, 158-162.	0.1	2
871	Deformation and Creep of Silicon Nitride-Matrix Composites. , 1991, , 230-241.		1
872	Corrosion-mechanical failure of silicon nitride ceramic under the action of salts. Strength of Materials, 1989, 21, 918-922.	0.2	2
873	Deformation and destruction of self-bonded silicon carbide under different loading rates. Refractories, 1989, 30, 626-629.	0.0	0
874	Strengthened ceramics based on Al2O3. Refractories, 1989, 30, 667-670.	0.0	1
875	Influence of oxidation on the destruction of self-bonded silicon carbide. Refractories, 1989, 30, 84-90.	0.0	1
876	Corrosion-mechanical failure of silicon nitride ceramics in air. Soviet Materials Science, 1989, 24, 550-554.	0.0	0
877	Behavior of hot-pressed boron carbide at high temperatures. II. Strength. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1989, 28, 487-490.	0.1	2
878	High temperature behavior of hot-compacted ceramics based on boron carbide Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1989, 28, 306-309.	0.1	2
879	Influence of the medium on the failure of a constructional ceramic (review). Soviet Materials Science, 1988, 23, 413-421.	0.0	1
880	Mechanical behaviour of hot-pressed boron carbide in various atmospheres. Journal of Materials Science Letters, 1988, 7, 814-816.	0.5	26
881	Influence of oxidation on the composition and structure of the surface layer of hot-pressed boron carbide. Oxidation of Metals, 1988, 29, 193-202.	1.0	30

Structural state and mechanical properties of the material in the sialon-titanium nitride system after radiant heating. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya) Tj ETQq $0\ 0\ 0\ gBT$ /Ovedock 10 Tf

50

882

#	Article	IF	CITATIONS
883	Mechanical properties and special features of the structure of materials based on boron carbide. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1987, 26, 589-594.	0.1	2
884	High-temperature oxidation of sintered lanthanum hexaboride. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1987, 26, 914-917.	0.1	3
885	Oxidation resistance and strength of hot-pressed ceramics based on silicon nitride. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1987, 26, 163-166.	0.1	1
886	High temperature oxidation of silicon carbide based materials. Oxidation of Metals, 1987, 27, 83-93.	1.0	14
887	Some features of the strength properties of silicon nitride ceramics at high temperatures. Strength of Materials, 1987, 19, 1555-1559.	0.2	4
888	Complex investigation of hot-pressed boron carbide. Journal of the Less Common Metals, 1986, 117, 225-230.	0.9	35
889	Effect of oxidation on the strength and thermal stability of a material based on silicon nitride. Strength of Materials, 1986, 18, 1070-1074.	0.2	1
890	Effect of oxidation on the strength of silicon nitride base reaction sintered ceramics. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1986, 25, 388-391.	0.1	2
891	Oxidation resistance of corundum-graphite materials used for teeming steels. Refractories, 1986, 27, 684-689.	0.0	0
892	Kinetics and mechanism of oxidation of sialons. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1985, 24, 710-713.	0.1	5
893	High-temperature oxidation of reaction-sintered silicon nitride with various additions. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1985, 24, 207-210.	0.1	3
894	Effect of oxidation on the strength of silicon nitride ceramics. Strength of Materials, 1985, 17, 82-87.	0.2	3
895	Relationship between the oxidation resistance and the high-temperature strength of silicon carbide materials. Refractories, 1985, 26, 233-236.	0.0	0
896	Action of salts on the strength and crack resistance of silicon nitride ceramics. Strength of Materials, 1984, 16, 1515-1519.	0.2	0
897	Corundum-graphite materials for steel casting. Refractories, 1984, 25, 71-74.	0.0	3
898	Technology of corundum-graphite refractories with a combined binder. Refractories, 1984, 25, 647-650.	0.0	3
899	High-temperature oxidation of a silicon nitride constructional ceramic. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya Metallurgiya), 1984, 23, 859-863.	0.1	2
900	Carbide Derived Carbon (Cdc) Coatings for Tyranno Zmi Sic Fibers. , 0, , 57-62.		19

#	Article	IF	CITATIONS
901	Mechanical Properties of Carbon and BN Coated SiC Fibers. Ceramic Engineering and Science Proceedings, 0, , 225-230.	0.1	2
902	Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene)., 0, .		1
903	Raman microspectroscopy. , 0, , .		1
904	Computer Simulation of Hydrogen Capacity of Nanoporous Carbon. Ceramic Engineering and Science Proceedings, 0, , 241-250.	0.1	0