
Robert Hall Michell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2118483/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The reliability of biomedical science: A case history of a maturing experimental field. BioEssays, 2022, 44, e2200020.	2.5	1
2	Mike Wakelam: an appreciation. Essays in Biochemistry, 2020, 64, 397-399.	4.7	2
3	PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection. PLoS Pathogens, 2019, 15, e1007551.	4.7	35
4	Do inositol supplements enhance phosphatidylinositol supply and thus support endoplasmic reticulum function?. British Journal of Nutrition, 2018, 120, 301-316.	2.3	24
5	Drug Redeployment to Kill Leukemia and Lymphoma Cells by Disrupting SCD1-Mediated Synthesis of Monounsaturated Fatty Acids. Cancer Research, 2015, 75, 2530-2540.	0.9	48
6	Inositol lipids: from an archaeal origin to phosphatidylinositol 3,5-bisphosphate faults in human disease. FEBS Journal, 2013, 280, 6281-6294.	4.7	46
7	Versatility and nuances of the architecture of haematopoiesis – Implications for the nature of leukaemia. Leukemia Research, 2012, 36, 14-22.	0.8	6
8	Inositol and its derivatives: Their evolution and functions. Advances in Enzyme Regulation, 2011, 51, 84-90.	2.6	58
9	The redirection of glyceride and phospholipid synthesis by drugs including chlorpromazine, fenfluramine, Imipramine, mepyramine and local anaesthetics. Journal of Pharmacy and Pharmacology, 2011, 27, 462-464.	2.4	56
10	A possible metabolic explanation for drug-induced phospholipidosis. Journal of Pharmacy and Pharmacology, 2011, 28, 331-332.	2.4	43
11	The versatility of haematopoietic stem cells: implications for leukaemia. Critical Reviews in Clinical Laboratory Sciences, 2010, 47, 171-180.	6.1	6
12	Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochemical Journal, 2009, 419, 1-13.	3.7	172
13	First came the link between phosphoinositides and Ca2+ signalling, and then a deluge of other phosphoinositide functions. Cell Calcium, 2009, 45, 521-526.	2.4	14
14	A protein complex that regulates PtdIns(3,5)P2 levels. EMBO Journal, 2009, 28, 86-87.	7.8	25
15	Inositol Lipid-Dependent Functions in Saccharomyces cerevisiae: Analysis of Phosphatidylinositol Phosphates. Methods in Molecular Biology, 2009, 462, 1-16.	0.9	5
16	Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature, 2008, 451, 964-969.	27.8	508
17	Inositol derivatives: evolution and functions. Nature Reviews Molecular Cell Biology, 2008, 9, 151-161.	37.0	363
18	Inhibition by glucocorticoid and staurosporine of IL-4-dependent CD23 production in B lymphocytes is reversed on engaging CD40. Clinical and Experimental Immunology, 2008, 92, 347-352.	2.6	12

#	Article	IF	CITATIONS
19	The sequential determination model of hematopoiesis. Trends in Immunology, 2007, 28, 442-448.	6.8	29
20	Evolution of the diverse biological roles of inositols. Biochemical Society Symposia, 2007, 74, 223-246.	2.7	28
21	Evolution of the diverse biological roles of inositols. Biochemical Society Symposia, 2007, 74, 223.	2.7	28
22	Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends in Biochemical Sciences, 2006, 31, 52-63.	7.5	203
23	Hypo-osmotic Stress Activates Plc1p-dependent Phosphatidylinositol 4,5-Bisphosphate Hydrolysis and Inositol Hexakisphosphate Accumulation in Yeast. Journal of Biological Chemistry, 2004, 279, 5216-5226.	3.4	39
24	PtdIns-specific MPR Pathway Association of a Novel WD40 Repeat Protein, WIPI49. Molecular Biology of the Cell, 2004, 15, 2652-2663.	2.1	118
25	Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO Journal, 2004, 23, 1922-1933.	7.8	302
26	Complex changes in cellular inositol phosphate complement accompany transit through the cell cycle. Biochemical Journal, 2004, 380, 465-473.	3.7	71
27	Cell differentiation and proliferation—simultaneous but independent?. Experimental Cell Research, 2003, 291, 282-288.	2.6	68
28	New insights into the roles of phosphoinositides and inositol polyphosphates in yeast. Biochemical Society Transactions, 2003, 31, 11-15.	3.4	9
29	HL60 Cells Halted in G1 or S Phase Differentiate Normally. Experimental Cell Research, 2002, 281, 28-38.	2.6	30
30	Identification of ARAP3, a Novel PI3K Effector Regulating Both Arf and Rho GTPases, by Selective Capture on Phosphoinositide Affinity Matrices. Molecular Cell, 2002, 9, 95-108.	9.7	286
31	Inositol Phosphates: A Remarkably Versatile Enzyme. Current Biology, 2002, 12, R313-R315.	3.9	8
32	Vac14 Controls PtdIns(3,5) P 2 Synthesis and Fab1-Dependent Protein Trafficking to the Multivesicular Body. Current Biology, 2002, 12, 885-893.	3.9	125
33	Cell Proliferation and CD11b Expression Are Controlled Independently during HL60 Cell Differentiation Initiated by 1,251±-Dihydroxyvitamin D3 or All-trans-Retinoic Acid. Experimental Cell Research, 2001, 266, 126-134.	2.6	63
34	Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and 11±,25-dihydroxyvitamin D3. Biochemical Journal, 2001, 355, 361.	3.7	15
35	Estrogenic Alkylphenols Induce Cell Death by Inhibiting Testis Endoplasmic Reticulum Ca2+ Pumps. Biochemical and Biophysical Research Communications, 2000, 277, 568-574.	2.1	138
36	Complementation Analysis in PtdInsPKinase-deficient Yeast Mutants Demonstrates ThatSchizosaccharomyces pombe and Murine Fab1p Homologues Are Phosphatidylinositol 3-Phosphate 5-Kinases. Journal of Biological Chemistry, 1999, 274, 33905-33912.	3.4	100

#	Article	IF	CITATIONS
37	Monocytically Differentiating HL60 Cells Proliferate Rapidly before They Mature. Experimental Cell Research, 1999, 253, 511-518.	2.6	32
38	Phosphatidylinositol(3,5)bisphosphate: a novel Inositol lipid linking stress responses to membrane trafficking in yeast. Biochemical Society Transactions, 1999, 27, A77-A77.	3.4	0
39	Phosphatidylinositol 3,5-bisphosphate: a novel lipid that links stress responses to membrane trafficking events. Biochemical Society Transactions, 1999, 27, 674-677.	3.4	9
40	MAMMALIAN PtdIns <i>P</i> KINASES: ANALYSIS OF THEIR PtdIns <i>P</i> 2 SPECIFICITY <i>IN VIVO</i> BY EXPRESSION IN <i>FAB1</i> DELETED YEAST. Biochemical Society Transactions, 1999, 27, A102-A102.	3.4	0
41	The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Current Biology, 1998, 8, 1219-S2.	3.9	201
42	Diacylglycerols and phosphatidates: which molecular species are intracellular messengers?. Trends in Biochemical Sciences, 1998, 23, 200-204.	7.5	284
43	Inositol hexakisphosphate in SchizosaccharomycesÂpombe: synthesis from Ins(1,4,5)P3 and osmotic regulation. Biochemical Journal, 1998, 335, 671-679.	3.7	66
44	Altered protein tyrosine phosphorylation in rheumatoid T cells which is mimicked by hydrogen peroxide. Biochemical Society Transactions, 1997, 25, 303S-303S.	3.4	0
45	Inhibition of Phosphatases and Increased Ca2+ Channel Activity by Inositol Hexakisphosphate. Science, 1997, 278, 471-474.	12.6	126
46	Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature, 1997, 390, 187-192.	27.8	440
47	Potentiation of myeloid differentiation by anti-inflammatory agents, by steroids and by retinoic acid involves a single intracellular target, probably an enzyme of the aldoketoreductase family. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1311, 189-198.	4.1	45
48	Synthesis and iron binding studies of myo-inositol 1,2,3-trisphosphate and (±)-myo-inositol 1,2-bisphosphate, and iron binding studies of all myo-inositol tetrakisphosphates. Carbohydrate Research, 1996, 282, 81-99.	2.3	33
49	Localisation of Bradykinin-Like Immunoreactivity and Modulation of Bradykinin-Evoked Phospholipase D Activity by 17β-Oestradiol in Human Endometrium. Growth Factors, 1995, 12, 203-209.	1.7	2
50	The involvement of inositol lipids and phosphates in signalling in the fission yeast <i>Schizosaccharomyces pombe</i> . Biochemical Society Transactions, 1995, 23, 223S-223S.	3.4	3
51	Altered T lymphocyte signaling in rheumatoid arthritis. European Journal of Immunology, 1995, 25, 1547-1554.	2.9	70
52	Phosphatidylinositol 4,5-bisphosphate hydrolysis accompanies T cell receptor-induced apoptosis of murine thymocytes within the thymus. European Journal of Immunology, 1995, 25, 1828-1835.	2.9	14
53	Inositol lipid-mediated signalling in response to endothelin and ATP in the mammalian testis. Molecular and Cellular Biochemistry, 1995, 149-150, 161-174.	3.1	24
54	Inositol lipid-mediated signalling in response to endothelin and ATP in the mammalian testis. , 1995, ,		0

⁵⁴ 161-174.

#	Article	IF	CITATIONS
55	Second Messengers: Sphingolipid signalling. Current Biology, 1994, 4, 370-373.	3.9	39
56	Intracellular concentrations of inositol, glycerophosphoinositol and inositol pentakisphosphate increase during haemopoietic cell differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 101-108.	4.1	34
57	Inhibition of porcine brain inositol 1,3,4-trisphosphate kinase by inositol polyphosphates, other polyol phosphates, polyanions and polycations. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1223, 57-70.	4.1	11
58	Stimulation of tyrosine phosphorylation without inositol lipid hydrolysis in human B lymphocytes on engaging CD72. FEBS Letters, 1993, 319, 212-216.	2.8	4
59	Novel inositol containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling. Current Opinion in Neurobiology, 1993, 3, 383-400.	4.2	44
60	The intracellular distribution of inositol polyphosphates. Biochemical Society Transactions, 1993, 21, 361S-361S.	3.4	2
61	Endothelin-1 stimulates inositol phosphate production in rat testis. Biochemical Society Transactions, 1993, 21, 364S-364S.	3.4	2
62	Inhibition of inositol 1,3,4-trisphosphate 5/6-kinase by amino acid modifying agents. Biochemical Society Transactions, 1993, 21, 365S-365S.	3.4	2
63	Inositol lipids in cellular signalling mechanisms. Trends in Biochemical Sciences, 1992, 17, 274-276.	7.5	74
64	Nuclear PIPs. Current Biology, 1992, 2, 200-202.	3.9	20
65	Second-messenger pathways involved in the regulation of survival in germinal-centre B cells and in burkitt lymphoma lines. International Journal of Cancer, 1992, 52, 959-966.	5.1	47
66	Inositol Lipids and Phosphates in the Proliferation and Differentiation of Lymphocytes and Myeloid Cells. Novartis Foundation Symposium, 1992, 164, 2-16.	1.1	3
67	Changes in inositol transport during DMSO-induced differentiation of HL60 cells towards neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1091, 158-164.	4.1	10
68	Regulation of the interleukin 4 signal in human B-lymphocytes. Biochemical Society Transactions, 1991, 19, 287-291.	3.4	10
69	Protein phosphorylation events and changes in inositol metabolism during HL60 cell differentiation. Biochemical Society Transactions, 1991, 19, 315-320.	3.4	3
70	The role of inositol lipid hydrolysis in the selection of immature thymocytes. Biochemical Society Transactions, 1991, 19, 90S-90S.	3.4	3
71	Dephosphorylation of D-myo-inositol-1,4,5-trisphosphate in testes. Biochemical Society Transactions, 1991, 19, 105S-105S.	3.4	6
72	Interleukin 4 activates human B lymphocytes via transient inositol lipid hydrolysis and delayed cyclic adenosine monophosphate generation. European Journal of Immunology, 1990, 20, 151-156.	2.9	111

#	Article	IF	CITATIONS
73	The use of cells doubly labelled with [14C]inositol and [3H]inositol to search for a hormone-sensitive inositol lipid pool with atypically rapid metabolic turnover. Journal of Endocrinology, 1989, 122, 379-389.	2.6	19
74	Cell regulation: editorial overview. Current Opinion in Cell Biology, 1989, 1, 157-158.	5.4	1
75	Inositol lipids and phosphates. Current Opinion in Cell Biology, 1989, 1, 201-205.	5.4	12
76	Inositol lipids and phosphates in growing, stimulated and differentiating cells. Biochemical Society Transactions, 1989, 17, 1-3.	3.4	16
77	A search for a hormone-sensitive inositol lipid pool in WRK 1 mammary tumour cells. Biochemical Society Transactions, 1989, 17, 88-89.	3.4	6
78	Do cells contain discrete pools of inositol lipids that are coupled to receptor activation?. Biochemical Society Transactions, 1989, 17, 978-980.	3.4	10
79	Inositol tetrakisphosphates in WRK-1 cells. Biochemical Society Transactions, 1988, 16, 984-985.	3.4	12
80	Inositol phosphates in growing and differentiating HL60 cells. Biochemical Society Transactions, 1988, 16, 985-986.	3.4	16
81	Inositol trisphosphate and tetrakisphosphate phosphomonoesterases of rat liver. Biochemical Society Transactions, 1987, 15, 28-32.	3.4	16
82	Redistribution of protein kinase C during mitogenesis of human B lymphocytes. Biochemical and Biophysical Research Communications, 1986, 135, 146-153.	2.1	72
83	Calcium uptake by intracellular compartments in permeabilised enterocytes effect of inositol 1,4,5 trisphosphate. Biochemical and Biophysical Research Communications, 1986, 139, 612-618.	2.1	15
84	Inositol lipid-mediated signalling in the nervous system. Neurochemistry International, 1986, 9, 231-233.	3.8	1
85	Ca2+ uptake by intracellular compartments in isolated enterocytes: effect of inositol 1,4,5-trisphosphate. Biochemical Society Transactions, 1986, 14, 1100-1101.	3.4	Ο
86	Analytical methods to quantify phosphoinositide turnover and related reactions. Fresenius Zeitschrift Für Analytische Chemie, 1986, 324, 236-236.	0.8	0
87	Inositol Lipid Metabolism in Receptor-Stimulated and Depolarized Sympathetic Ganglia and Adrenal Glands. , 1986, , 9-18.		Ο
88	Inositol lipid breakdown as a step in α-adrenergic stimulus-response coupling. Clinical Science, 1985, 68, 43s-46s.	0.0	9
89	Dephosphorylation of myo-inositol 1,4,5-trisphosphate. Biochemical Society Transactions, 1985, 13, 944-944.	3.4	0
90	A Combination of Calcium Ionophore and 12-O-Tetradecanoyl-Phorbol-13-Acetate (TPA) Stimulates the Growth of Purified Resting B Cells. Scandinavian Journal of Immunology, 1985, 22, 591-596.	2.7	39

#	Article	IF	CITATIONS
91	Hormone-mediated inositol lipid breakdown in hepatocytes and WRK1 cells: relationship to receptor function. Biochimie, 1985, 67, 1161-1167.	2.6	13
92	Synergism between diacylglycerols and calcium ionophore in the induction of human B cell proliferation mimics the inositol lipid polyphosphate breakdown signals induced by crosslinking surface immunoglobulin. Biochemical and Biophysical Research Communications, 1985, 131, 484-491.	2.1	42
93	A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature, 1984, 309, 258-261.	27.8	148
94	Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature, 1984, 312, 374-376.	27.8	340
95	The Role of Phosphatidylinositol 4,5 Bisphosphate Breakdown in Cell-Surface Receptor Activation. Journal of Receptors and Signal Transduction, 1984, 4, 489-504.	1.2	31
96	Inositol lipid breakdown and muscarinic mechanisms. Trends in Pharmacological Sciences, 1984, 5, 499.	8.7	0
97	V. Polyphosphoinositide breakdown as the initiating reaction in receptor-stimulated inositol phospholipid metabolism. Life Sciences, 1983, 32, 2083-2085.	4.3	48
98	Is Vasopressin-Stimulated Inositol Lipid Breakdown Intrinsic to the Mechanism of Ca2+-Mobilization at V1 Vasopressin Receptors?. Progress in Brain Research, 1983, 60, 405-411.	1.4	14
99	The control by Ca2+ of the polyphosphoinositide phosphodiesterase and the Ca2+-pump ATPase in human erythrocytes. Biochemical Journal, 1982, 202, 53-58.	3.7	79
100	The unknown meaning of receptor-stimulated inositol lipid metabolism. Trends in Pharmacological Sciences, 1982, 3, 140-141.	8.7	17
101	Stimulated inositol lipid metabolism: An introduction. Cell Calcium, 1982, 3, 285-294.	2.4	66
102	Inositol lipid metabolism in dividing and differentiating cells. Cell Calcium, 1982, 3, 429-440.	2.4	127
103	Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: Lipids in search of a function. Cell Calcium, 1982, 3, 467-502.	2.4	260
104	Variant cell lines from the human promyelocyte line HL60. Leukemia Research, 1982, 6, 491-498.	0.8	28
105	Is phosphatidylinositol really out of the calcium gate?. Nature, 1982, 296, 492-493.	27.8	125
106	Why is phosphatidylinositol degraded in response to stimulation of certain receptors?. Trends in Pharmacological Sciences, 1981, 2, 86-89.	8.7	149
107	The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochemical Journal, 1981, 198, 133-140.	3.7	604
108	Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function. Biochemical Society Transactions, 1981, 9, 377-379.	3.4	210

#	Article	IF	CITATIONS
109	Human erythrocyte membranes exhibit a cooperative calmodulin-dependent Ca2+-ATPase of high calcium sensitivity. Nature, 1981, 290, 270-271.	27.8	35
110	Apparent variations in the activation characteristics of human erythrocyte membrane Ca2+-pump ATPase may be caused by variable membrane permeability. Cell Calcium, 1981, 2, 473-482.	2.4	10
111	A simple assay for the polyphosphoinositide phosphodiesterase of the human erythrocyte membrane. Biochemical Society Transactions, 1980, 8, 127-127.	3.4	3
112	Effects of alkylating antagonists on the stimulated turnover of phosphatidylinositol produced by a variety of calcium-mobilising receptor systems. Cell Calcium, 1980, 1, 49-68.	2.4	0
113	Polyphosphoinositides in Isolated Preparations of Human Erythrocyte Membrane Glycophorin. Biochemical Society Transactions, 1979, 7, 358-359.	3.4	1
114	Agonist regulation of α-adrenergic receptor numbers. Nature, 1979, 279, 170-170.	27.8	0
115	Inositol phospholipids in membrane function. Trends in Biochemical Sciences, 1979, 4, 128-131.	7.5	297
116	Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation. Biochemical Journal, 1979, 182, 661-668.	3.7	131
117	Stimulation of phosphatidylinositol turnover in various tissues by cholinergic and adrenergic agonists, by histamine and by caerulein. Biochemical Journal, 1979, 182, 669-676.	3.7	79
118	Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature. Nature, 1978, 276, 289-290.	27.8	157
119	Membrane protein segregation during release of microvesicles from human erythrocytes. FEBS Letters, 1978, 90, 289-292.	2.8	48
120	MgATP2- and the Molecular Organization of Erythrocyte Membranes. Biochemical Society Transactions, 1978, 6, 285-286.	3.4	0
121	Stimulus-Response Coupling at α-Adrenergic Receptors. Biochemical Society Transactions, 1978, 6, 673-688.	3.4	80
122	THE INFLUENCE OF INTRACELLULAR Ca2+ ON THE METABOLISM OF INOSITOL PHOSPHOLIPIDS IN LYMPHOCYTES AND ERYTHROCYTES., 1978,, 325-336.		1
123	Metabolism of Phosphatidate at the Plasma Membrane. Biochemical Society Transactions, 1977, 5, 55-59.	3.4	10
124	A Possible Role for Phosphatidylinositol Breakdown in Muscarinic Cholinergic Stimulus-Response Coupling. Biochemical Society Transactions, 1977, 5, 77-81.	3.4	35
125	The Relationship between Calcium Ion Gates and the Stimulation of Phosphatidylinositol Turnover. Biochemical Society Transactions, 1977, 5, 104-106.	3.4	2
126	Recovery of Membrane Micro-vesicles from Human Erythrocytes Stored for Transfusion: A Mechanism for the Erythrocyte Discocyte-to-Spherocyte Shape Transformation. Biochemical Society Transactions, 1977, 5, 126-128.	3.4	121

#	Article	IF	CITATIONS
127	A Comparison of Haemoglobin-Free Human Erythrocyte â€ [~] Ghosts' Prepared under Isoionic and Hypoionic Conditions. Biochemical Society Transactions, 1977, 5, 1139-1140.	3.4	2
128	Production of 1,2-diacylglycerol in human erythrocyte membranes exposed to low concentrations of calcium ions. Biochimica Et Biophysica Acta - Biomembranes, 1976, 455, 824-830.	2.6	34
129	Receptor occupancy dose-response curve suggests that phosphatidyl-inositol breakdown may be intrinsic to the mechanism of the muscarinic cholinergic receptor. FEBS Letters, 1976, 69, 1-5.	2.8	91
130	Production of 1,2-Diacylglycerol in Human Erythrocyte â€~Ghosts' Exposed to Very Low Calcium Ion Concentrations. Biochemical Society Transactions, 1976, 4, 252-253.	3.4	0
131	A Possible Role for 1,2-Diacylglycerol in Fusion of Erythrocytes by Sendai Virus. Biochemical Society Transactions, 1976, 4, 253-253.	3.4	3
132	Biochemical Differentiation of the Plasma Membrane of the Intestinal Epithelial Cell. Biochemical Society Transactions, 1976, 4, 1017-1020.	3.4	10
133	Muscarinic cholinergic stimulation of phosphatidylinositol turnover in isolated rat superior cervical sympathetic ganglia. Journal of Neurochemistry, 1976, 26, 649-651.	3.9	39
134	Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular [Ca2+]. Nature, 1976, 261, 58-60.	27.8	251
135	Significance of Minor Glycerolipids in Membrane Structure and Function. Advances in Experimental Medicine and Biology, 1976, 72, 3-13.	1.6	9
136	Elevation of Intracellular Calcium Ion Concentration Provokes Production of I,2-Diacylglycerol and Phosphatidate in Human Erythrocytes. Biochemical Society Transactions, 1975, 3, 751-752.	3.4	11
137	Differences in the Enzymic, Polypeptide, Glycopeptide, Glycolipid and Phospholipid Compositions of Plasma Membranes from the Two Surfaces of Intestinal Epithelial Cells. Biochemical Society Transactions, 1975, 3, 752-753.	3.4	19
138	Identification and Isolation of Basolateral Plasma Membranes from Intestinal Epithelial Cell Sheets. Biochemical Society Transactions, 1975, 3, 754-754.	3.4	0
139	Inositol phospholipids and cell surface receptor function. BBA - Biomembranes, 1975, 415, 81-147.	8.0	2,292
140	Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes. Nature, 1975, 258, 348-349.	27.8	165
141	Inositol cyclic phosphate as a product of phosphatidylinositol breakdown by phospholipase C (Bacillus cereus). FEBS Letters, 1975, 53, 302-304.	2.8	23
142	Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium) Tj ETQq0 0 0 309-316.) rgBT /Ov 2.6	erlock 10 Tf 5 72
143	Effects of acetylcholine on incorporation of [14C]glucose into phosphatidylinositol and on phosphatidylinositol breakdown in subcellular fractions from cerebral cortex. Journal of Neurochemistry, 1974, 23, 283-287.	3.9	13
144	Transfer of very low density lipoprotein from hen plasma into egg yolk. FEBS Letters, 1974, 39, 275-277.	2.8	30

#	Article	IF	CITATIONS
145	Breakdown of phosphatidylinositol provoked by muscarinic cholinergic stimulation of rat parotid-gland fragments. Biochemical Journal, 1974, 142, 583-590.	3.7	106
146	Phosphatidylinositol cleavage catalysed by the soluble fraction from lymphocytes. Activity at pH5.5 and pH7.0. Biochemical Journal, 1974, 142, 591-597.	3.7	68
147	Phosphatidylinositol cleavage in lymphocytes. Requirement for calcium ions at a low concentration and effects of other cations. Biochemical Journal, 1974, 142, 599-604.	3.7	75
148	Enhanced phosphatidylinositol labelling in rat parotid fragments exposed to α-adrenergic stimulation. Biochemical Journal, 1974, 138, 47-52.	3.7	50
149	Hydrolysis of 1,2-diglyceride by membrane-associated lipase activity during phospholipase C treatment of membranes. Biochimica Et Biophysica Acta - Biomembranes, 1973, 318, 306-312.	2.6	30
150	Phosphatidylinositol metabolism in cells receiving extracellular stimulation. FEBS Letters, 1973, 31, 1-10.	2.8	123
151	A membrane-bound activity catalysing phosphatidylinositol breakdown to 1,2-diacylglycerol, d-myoinositol 1:2-cyclic phosphate and d-myoinositol 1-phosphate. Properties and subcellular distribution in rat cerebral cortex. Biochemical Journal, 1973, 131, 433-442.	3.7	135
152	Inositol 1:2-Cyclic Phosphate in Tissues. Biochemical Society Transactions, 1973, 1, 429-429.	3.4	4
153	Stimulation by acetylcholine of phosphatidylinositol labelling. Subcellular distribution in rat cerebral-cortex slices. Biochemical Journal, 1972, 126, 1141-1147.	3.1	79
154	Glycerylphosphorylcholine phosphodiesterase in rat liver. Subcellular distribution and localization in plasma membranes. Biochemical Journal, 1972, 127, 357-368.	3.1	37
155	Production of Cyclic Inositol Phosphate in Stimulated Tissues. Nature: New Biology, 1972, 240, 258-260.	4.5	64
156	The distributions of some granule-associated enzymes in guinea-pig polymorphonuclear leucocytes. Biochemical Journal, 1970, 116, 207-216.	3.1	238
157	Extraction of polyphosphoinositides with neutral and acidified solvents A comparison of guinea-pig brain and liver, and measurements of rat liver inositol compounds which are resistant to extraction. Lipids and Lipid Metabolism, 1970, 210, 86-91.	2.6	77
158	MEASUREMENT OF RATES OF PHAGOCYTOSIS. Journal of Cell Biology, 1969, 40, 216-224.	5.2	154
159	The biosynthesis of triphosphoinositide by rat brain in vitro. Biochemical and Biophysical Research Communications, 1966, 22, 370-375.	2.1	40
160	The site of diphosphoinositide synthesis in rat liver. Biochemical and Biophysical Research Communications, 1965, 21, 333-338.	2.1	477