Imara Y Perera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117592/publications.pdf Version: 2024-02-01

Ιμαρά Υ Ρεσερά

#	Article	IF	CITATIONS
1	Evaluating the Effects of the Circadian Clock and Time of Day on Plant Gravitropic Responses. Methods in Molecular Biology, 2022, 2368, 301-319.	0.9	1
2	NASA GeneLab RNA-seq consensus pipeline: Standardized processing of short-read RNA-seq data. IScience, 2021, 24, 102361.	4.1	20
3	A Role for Inositol Pyrophosphates in the Metabolic Adaptations to Low Phosphate in Arabidopsis. Metabolites, 2021, 11, 601.	2.9	13
4	Uncovering Transcriptional Responses to Fractional Gravity in Arabidopsis Roots. Life, 2021, 11, 1010.	2.4	10
5	The Circadian-clock Regulates the <i>Arabidopsis</i> Gravitropic Response. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2021, 9, 171-186.	0.8	3
6	Inositol Pyrophosphates and Phosphate Sensing in Plants. FASEB Journal, 2019, 33, 480.1.	0.5	0
7	Certain Malvaceae Plants Have a Unique Accumulation of myo-Inositol 1,2,4,5,6-Pentakisphosphate. Plants, 2015, 4, 267-283.	3.5	5
8	Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?. Planta, 2015, 241, 741-755.	3.2	11
9	Biosynthesis and possible functions of inositol pyrophosphates in plants. Frontiers in Plant Science, 2015, 6, 67.	3.6	53
10	Methods for RNA Profiling of Gravi-Responding Plant Tissues. Methods in Molecular Biology, 2015, 1309, 91-117.	0.9	2
11	Phosphoinositide-signaling is one component of a robust plant defense response. Frontiers in Plant Science, 2014, 5, 267.	3.6	51
12	Phosphatidylinositol 4,5-Bisphosphate Influences PIN Polarization by Controlling Clathrin-Mediated Membrane Trafficking in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 25, 4894-4911.	6.6	158
13	Two inositol hexakisphosphate kinases drive inositol pyrophosphate synthesis in plants. Plant Journal, 2014, 80, 642-653.	5.7	73
14	A role for lipidâ€mediated signaling in plant gravitropism. American Journal of Botany, 2013, 100, 153-160.	1.7	13
15	Phosphatidylinositol 4-Kinase and Phosphatidylinositol 4-Phosphate 5-Kinase Assays. Methods in Molecular Biology, 2013, 1009, 163-174.	0.9	3
16	Measurement of Inositol (1,4,5) Trisphosphate in Plant Tissues by a Competitive Receptor Binding Assay. Methods in Molecular Biology, 2013, 1009, 33-41.	0.9	2
17	A Role for Phosphoinositides in Regulating Plant Nuclear Functions. Frontiers in Plant Science, 2012, 3, 50.	3.6	56
18	The Hull of Fame: Lipid Signaling in the Plasma Membrane. Plant Cell Monographs, 2011, , 437-455.	0.4	5

Imara Y Perera

#	Article	IF	CITATIONS
19	Role of inositol 1,4,5â€triphosphate signalling in gravitropic and phototropic gene expression. Plant, Cell and Environment, 2010, 33, 2041-2055.	5.7	31
20	Increasing inositol (1,4,5)â€ŧrisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphateâ€sensitive biomass increases in tomato. Plant Biotechnology Journal, 2010, 8, 170-183.	8.3	49
21	Basal Signaling Regulates Plant Growth and Development. Plant Physiology, 2010, 154, 439-443.	4.8	17
22	InsP3 in Plant Cells. Plant Cell Monographs, 2010, , 145-160.	0.4	12
23	Phosphatidylinositol (4,5)Bisphosphate Inhibits K+-Efflux Channel Activity in NT1 Tobacco Cultured Cells Â. Plant Physiology, 2009, 149, 1127-1140.	4.8	31
24	Transgenic <i>Arabidopsis</i> Plants Expressing the Type 1 Inositol 5-Phosphatase Exhibit Increased Drought Tolerance and Altered Abscisic Acid Signaling. Plant Cell, 2008, 20, 2876-2893.	6.6	146
25	The N-terminal Membrane Occupation and Recognition Nexus Domain of Arabidopsis Phosphatidylinositol Phosphate Kinase 1 Regulates Enzyme Activity. Journal of Biological Chemistry, 2007, 282, 5443-5452.	3.4	77
26	Increasing Plasma Membrane Phosphatidylinositol(4,5)Bisphosphate Biosynthesis Increases Phosphoinositide Metabolism in Nicotiana tabacum. Plant Cell, 2007, 19, 1603-1616.	6.6	67
27	Quality Assessment of Affymetrix GeneChip Data using the EM Algorithm and a Naive Bayes Classifier. , 2007, , .		1
28	Phosphoinositide Metabolism: Towards an Understanding of Subcellular Signaling. , 2006, 39, 181-205.		27
29	A Universal Role for Inositol 1,4,5-Trisphosphate-Mediated Signaling in Plant Gravitropism. Plant Physiology, 2006, 140, 746-760.	4.8	157
30	Characterization and comparative analysis ofArabidopsisphosphatidylinositol phosphate 5-kinase 10 reveals differences inArabidopsisand human phosphatidylinositol phosphate kinases. FEBS Letters, 2005, 579, 3427-3432.	2.8	52
31	Cyclodextrins enhance recombinant phosphatidylinositol phosphate kinase activity. Journal of Lipid Research, 2004, 45, 1783-1789.	4.2	12
32	Differential Expression of Vacuolar H+-ATPase Subunit c Genes in Tissues Active in Membrane Trafficking and Their Roles in Plant Growth as Revealed by RNAi. Plant Physiology, 2004, 134, 1514-1526.	4.8	114
33	Up-Regulation of Phosphoinositide Metabolism in Tobacco Cells Constitutively Expressing the Human Type I Inositol Polyphosphate 5-Phosphatase. Plant Physiology, 2002, 129, 1795-1806.	4.8	54
34	A Role for Inositol 1,4,5-Trisphosphate in Gravitropic Signaling and the Retention of Cold-Perceived Gravistimulation of Oat Shoot Pulvini. Plant Physiology, 2001, 125, 1499-1507.	4.8	143
35	Plasma Membrane Phosphatidylinositol 4,5-Bisphosphate Levels Decrease with Time in Culture. Plant Physiology, 2001, 126, 1507-1518.	4.8	53

The Phosphoinositide (PI) Pathway and Signaling in Plants. , 2001, , 83-92.

IMARA Y PERERA

#	Article	IF	CITATIONS
37	Plant PtdIns 3-Kinase Goes Nuclear. Plant Cell, 2000, 12, 1511-1512.	6.6	0
38	Plant PtdIns 3-Kinase Goes Nuclear. Plant Cell, 2000, 12, 1511.	6.6	0
39	Inositol signaling and plant growth. Trends in Plant Science, 2000, 5, 252-258.	8.8	238
40	Sense and Sensibility: Inositol Phospholipids as Mediators of Abiotic Stress Responses. , 2000, , 285-296.		2
41	Changes in Phosphoinositide Metabolism with Days in Culture Affect Signal Transduction Pathways inGaldieria sulphuraria1. Plant Physiology, 1999, 119, 1331-1340.	4.8	56
42	Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5838-5843.	7.1	201
43	A Phosphatidylinositol 4-Kinase Pleckstrin Homology Domain That Binds Phosphatidylinositol 4-Monophosphate. Journal of Biological Chemistry, 1998, 273, 22761-22767.	3.4	138
44	Several distinct genes encode nearly identical 16 kDa proteolipids of the vacuolar H+-ATPase from Arabidopsis thaliana. Plant Molecular Biology, 1995, 29, 227-244.	3.9	53
45	Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Molecular Biology, 1993, 22, 215-225.	3.9	72
46	Synthesis and Accumulation of Calmodulin in Suspension Cultures of Carrot (Daucus carota L.). Plant Physiology, 1992, 100, 812-819.	4.8	22
47	Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Molecular Biology, 1992, 19, 649-664.	3.9	80
48	Primary Structures of <i>Arabidopsis</i> Calmodulin Isoforms Deduced from the Sequences of cDNA Clones. Plant Physiology, 1991, 96, 1196-1202.	4.8	97