Tommy Nylander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117144/publications.pdf

Version: 2024-02-01

241 papers

9,529 citations

52 h-index 84 g-index

248 all docs 248 docs citations

times ranked

248

9764 citing authors

#	Article	IF	CITATIONS
1	Shear-induced nanostructural changes in micelles formed by sugar-based surfactants with varied anomeric configuration. Journal of Colloid and Interface Science, 2022, 606, 328-336.	5.0	9
2	Interaction of nanoparticles with lipid films: the role of symmetry and shape anisotropy. Physical Chemistry Chemical Physics, 2022, 24, 2762-2776.	1.3	11
3	Nanoscale structural and mechanical characterization of thin bicontinuous cubic phase lipid films. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112231.	2.5	7
4	Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon: A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2022, 126, 789-801.	1.2	5
5	Effect of encapsulated protein on the dynamics of lipid sponge phase: a neutron spin echo and molecular dynamics simulation study. Nanoscale, 2022, , .	2.8	5
6	Electrostatic interactions between cationic dendrimers and anionic model biomembrane. Chemistry and Physics of Lipids, 2022, 246, 105214.	1.5	2
7	Tail unsaturation tailors the thermodynamics and rheology of a self-assembled sugar-based surfactant. Journal of Colloid and Interface Science, 2021, 585, 178-183.	5.0	8
8	Molecular structure of maltoside surfactants controls micelle formation and rheological behavior. Journal of Colloid and Interface Science, 2021, 581, 895-904.	5.0	13
9	Sequential infiltration synthesis and pattern transfer using 6 nm half-pitch carbohydrate-based fingerprint block copolymer., 2021,,.		1
10	Tuning lipid structure by bile salts: Hexosomes for topical administration of catechin. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111564.	2.5	20
11	Poly(styrene)- <i>block</i> -Maltoheptaose Films for Sub-10 nm Pattern Transfer: Implications for Transistor Fabrication. ACS Applied Nano Materials, 2021, 4, 5141-5151.	2.4	7
12	Thermoresponsive Glycopolymers Based on Enzymatically Synthesized Oligo-β-Mannosyl Ethyl Methacrylates and <i>N</i> -Isopropylacrylamide. Biomacromolecules, 2021, 22, 2338-2351.	2.6	7
13	Morphologies and Structure of Brain Lipid Membrane Dispersions. Frontiers in Cell and Developmental Biology, 2021, 9, 675140.	1.8	18
14	Bicontinuous cubic liquid crystalline phase nanoparticles stabilized by softwood hemicellulose. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111753.	2.5	10
15	Ultrasmall TPGS–PLGA Hybrid Nanoparticles for Site-Specific Delivery of Antibiotics into <i>Pseudomonas aeruginosa</i> Biofilms in Lungs. ACS Applied Materials & Delivery of Antibiotics into Applied Materials & Delivery of Applied Mate	4.0	57
16	Fluorescent Labeling of Helminth Extracellular Vesicles Using an In Vivo Whole Organism Approach. Biomedicines, 2020, 8, 213.	1.4	15
17	Salt partition, ion equilibria, and the structure, composition, and solubility of micellar calcium phosphate in bovine milk with added calcium salts. Journal of Dairy Science, 2020, 103, 9893-9905.	1.4	9
18	Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. Crystals, 2020, 10, 755.	1.0	27

#	Article	IF	CITATIONS
19	Facile control of surfactant lamellar phase transition and adsorption behavior. RSC Advances, 2020, 10, 18025-18034.	1.7	5
20	On the interaction of softwood hemicellulose with cellulose surfaces in relation to molecular structure and physicochemical properties of hemicellulose. Soft Matter, 2020, 16, 7063-7076.	1.2	20
21	Surface rheology and morphology of beer protein and iso-humulone at air-liquid surface. Food Hydrocolloids, 2020, 108, 105897.	5 . 6	5
22	Encapsulation of Aspartic Protease in Nonlamellar Lipid Liquid Crystalline Phases. Biophysical Journal, 2019, 117, 829-843.	0.2	16
23	Effect of the Anomeric Configuration on the Micellization of Hexadecylmaltoside Surfactants. Langmuir, 2019, 35, 13904-13914.	1.6	14
24	Enzyme encapsulation in nanostructured self-assembled structures: TowardÂbiofunctional supramolecular assemblies. Current Opinion in Colloid and Interface Science, 2019, 44, 130-142.	3.4	16
25	Interfacial properties of lipid sponge-like nanoparticles and the role of stabilizer on particle structure and surface interactions. Soft Matter, 2019, 15, 2178-2189.	1.2	18
26	Qualitative and quantitative analysis of the biophysical interaction of inhaled nanoparticles with pulmonary surfactant by using quartz crystal microbalance with dissipation monitoring. Journal of Colloid and Interface Science, 2019, 545, 162-171.	5.0	21
27	On the Molecular Interactions in Lipid Bilayer–Water Assemblies of Different Curvatures. Journal of Physical Chemistry B, 2019, 123, 2662-2672.	1.2	7
28	Immobilisation of \hat{l}^2 -galactosidase within a lipid sponge phase: structure, stability and kinetics characterisation. Nanoscale, 2019, 11, 21291-21301.	2.8	16
29	Towards biomimics of cell membranes: Structural effect of phosphatidylinositol triphosphate (PIP3) on a lipid bilayer. Colloids and Surfaces B: Biointerfaces, 2019, 173, 202-209.	2.5	22
30	Protein/Emulsifier Interactions. , 2019, , 101-192.		1
31	Lipid Shell-Enveloped Polymeric Nanoparticles with High Integrity of Lipid Shells Improve Mucus Penetration and Interaction with Cystic Fibrosis-Related Bacterial Biofilms. ACS Applied Materials & Interfaces, 2018, 10, 10678-10687.	4.0	21
32	$\hat{l}^2\text{-Mannanase-catalyzed}$ synthesis of alkyl mannooligosides. Applied Microbiology and Biotechnology, 2018, 102, 5149-5163.	1.7	19
33	The triolein/aqueous interface and lipase activity studied by spectroscopic ellipsometry and coarse grained simulations. Chemistry and Physics of Lipids, 2018, 211, 37-43.	1.5	12
34	The lipolytic degradation of highly structured cubic micellar nanoparticles of soy phosphatidylcholine and glycerol dioleate by phospholipase A 2 and triacylglycerol lipase. Chemistry and Physics of Lipids, 2018, 211, 86-92.	1.5	11
35	Editorial. Chemistry and Physics of Lipids, 2018, 211, 1-3.	1.5	0
36	Nanowires for Biosensing: Lightguiding of Fluorescence as a Function of Diameter and Wavelength. Nano Letters, 2018, 18, 4796-4802.	4.5	29

#	Article	IF	CITATIONS
37	Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength. Frontiers in Chemistry, 2018, 6, 139.	1.8	12
38	Phase behavior in the biologically important oleic acid/sodium oleate/water system. Chemistry and Physics of Lipids, 2018, 211, 30-36.	1.5	33
39	On the formation of inclusion complexes at the solid/liquid interface of anchored temperature-responsive PNIPAAM diblock copolymers with γ-cyclodextrin. Colloid and Polymer Science, 2017, 295, 1327-1341.	1.0	5
40	Effect of Phosphorylation on a Human-like Osteopontin Peptide. Biophysical Journal, 2017, 112, 1586-1596.	0.2	25
41	Non-lamellar lipid assembly at interfaces: controlling layer structure by responsive nanogel particles. Interface Focus, 2017, 7, 20160150.	1.5	12
42	Relationship between Structure and Fluctuations of Lipid Nonlamellar Phases Deposited at the Solid–Liquid Interface. Journal of Physical Chemistry B, 2017, 121, 2705-2711.	1.2	15
43	Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers. Colloids and Surfaces B: Biointerfaces, 2017, 151, 76-87.	2.5	33
44	Using Curvature Power To Map the Domain of Inverse Micellar Cubic Phases: The Case of Aliphatic Aldehydes in 1,2-Dioleoyl- <i>sn</i> -glycero-3-phosphoethanolamine. Langmuir, 2017, 33, 12804-12813.	1.6	8
45	Disassembly of Dipeptide Single Crystals Can Transform the Lipid Membrane into a Network. ACS Nano, 2017, 11, 7349-7354.	7.3	30
46	Supported Fluid Lipid Bilayer as a Scaffold to Direct Assembly of RNA Nanostructures. Methods in Molecular Biology, 2017, 1632, 107-122.	0.4	3
47	Theoretical and Experimental Investigations of Polyelectrolyte Adsorption Dependence on Molecular Weight. Langmuir, 2016, 32, 5721-5730.	1.6	9
48	Strong and tuneable wet adhesion with rationally designed layer-by-layer assembled triblock copolymer films. Nanoscale, 2016, 8, 18204-18211.	2.8	2
49	Sponge Phases and Nanoparticle Dispersions in Aqueous Mixtures of Mono- and Diglycerides. Langmuir, 2016, 32, 8650-8659.	1.6	50
50	Interfacial properties of POPC/GDO liquid crystalline nanoparticles deposited on anionic and cationic silica surfaces. Physical Chemistry Chemical Physics, 2016, 18, 26630-26642.	1.3	2
51	Lipid Spontaneous Curvatures Estimated from Temperature-Dependent Changes in Inverse Hexagonal Phase Lattice Parameters: Effects of Metal Cations. Langmuir, 2016, 32, 10083-10092.	1.6	14
52	Adsorption of the intrinsically disordered saliva protein histatin 5 to silica surfaces. A Monte Carlo simulation and ellipsometry study. Journal of Colloid and Interface Science, 2016, 467, 280-290.	5.0	15
53	Structural studies of hydrated samples of amorphous calcium phosphate and phosphoprotein nanoclusters. European Biophysics Journal, 2016, 45, 405-412.	1.2	12
54	Composition and structure of high temperature dairy fouling. Food Structure, 2016, 7, 13-20.	2.3	28

#	Article	IF	CITATIONS
55	Selective co-deposition of anionic silica particles at hydrophobic surfaces from formulations of oppositely charged polymers and surfactants. Journal of Colloid and Interface Science, 2016, 467, 213-219.	5.0	6
56	Nucleolipid bilayers: A quartz crystal microbalance and neutron reflectometry study. Colloids and Surfaces B: Biointerfaces, 2016, 137, 203-213.	2.5	31
57	Thermomyces lanuginosus lipase-catalyzed hydrolysis of the lipid cubic liquid crystalline nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 137, 50-59.	2.5	15
58	A review of the biology of calcium phosphate sequestration with special reference to milk. Dairy Science and Technology, 2015, 95, 3-14.	2.2	52
59	Non-lamellar lipid liquid crystalline structures at interfaces. Advances in Colloid and Interface Science, 2015, 222, 135-147.	7.0	36
60	Association of anionic surfactant and physisorbed branched brush layers probed by neutron and optical reflectometry. Journal of Colloid and Interface Science, 2015, 440, 245-252.	5.0	21
61	Solvatochromic fluorescent BODIPY derivative as imaging agent in camptothecin loaded hexosomes for possible theranostic applications. RSC Advances, 2015, 5, 23443-23449.	1.7	34
62	On the formation of dendrimer/nucleolipids surface films for directed self-assembly. Soft Matter, 2015, 11, 1973-1990.	1.2	9
63	Effect of Polyelectrolyte and Fatty Acid Soap on the Formation of CaCO ₃ in the Bulk and the Deposit on Hard Surfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21115-21129.	4.0	4
64	Surface nanostructures for fluorescence probing of supported lipid bilayers on reflective substrates. Nanoscale, 2015, 7, 18020-18024.	2.8	2
65	Structural effects of the dispersing agent polysorbate 80 on liquid crystalline nanoparticles of soy phosphatidylcholine and glycerol dioleate. Soft Matter, 2015, 11, 1140-1150.	1.2	16
66	Assembly of RNA nanostructures on supported lipid bilayers. Nanoscale, 2015, 7, 583-596.	2.8	20
67	DNA Compaction Induced by a Cationic Polymer or Surfactant Impact Gene Expression and DNA Degradation. PLoS ONE, 2014, 9, e92692.	1.1	38
68	Polyelectrolyte-surfactant association—from fundamentals to applications. Colloid Journal, 2014, 76, 585-594.	0.5	65
69	Model cell membranes: Discerning lipid and protein contributions in shaping the cell. Advances in Colloid and Interface Science, 2014, 205, 207-220.	7.0	50
70	The 26th Conference of the European Colloid and Interface Society held in Malmö, Sweden on 2–7 September 2012. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 442, 1.	2.3	0
71	Interactions of PAMAM Dendrimers with Negatively Charged Model Biomembranes. Journal of Physical Chemistry B, 2014, 118, 12892-12906.	1.2	24
72	Molecular recognition of nucleic acids by nucleolipid/dendrimer surface complexes. Soft Matter, 2014, 10, 8401-8405.	1.2	6

#	Article	IF	CITATIONS
73	Complexes formed between DNA and poly(amido amine) dendrimers of different generations – modelling DNA wrapping and penetration. Physical Chemistry Chemical Physics, 2014, 16, 13112-13122.	1.3	15
74	Fluid and Highly Curved Model Membranes on Vertical Nanowire Arrays. Nano Letters, 2014, 14, 4286-4292.	4. 5	32
75	Adsorption of Mixtures of Poly(amidoamine) Dendrimers and Sodium Dodecyl Sulfate at the Air–Water Interface. Langmuir, 2014, 30, 5817-5828.	1.6	15
76	Controlling Interfacial Film Formation in Mixed Polymer–Surfactant Systems by Changing the Vapor Phase. Langmuir, 2014, 30, 9991-10001.	1.6	6
77	Interactions of Small Dendrimers with Sodium Dodecyl Sulfate at the Air–Water Interface. Journal of Physical Chemistry B, 2014, 118, 11835-11848.	1.2	11
78	Formation of Highly Structured Cubic Micellar Lipid Nanoparticles of Soy Phosphatidylcholine and Glycerol Dioleate and Their Degradation by Triacylglycerol Lipase. ACS Applied Materials & Discrete Samp; Interfaces, 2014, 6, 7063-7069.	4.0	65
79	Formation of Inverse Topology Lyotropic Phases in Dioleoylphosphatidylcholine/Oleic Acid and Dioleoylphosphatidylethanolamine/Oleic Acid Binary Mixtures. Langmuir, 2014, 30, 3337-3344.	1.6	24
80	Direct Impact of Nonequilibrium Aggregates on the Structure and Morphology of Pdadmac/SDS Layers at the Air/Water Interface. Langmuir, 2014, 30, 8664-8674.	1.6	66
81	Mineralisation of soft and hard tissues and the stability of biofluids. Journal of Structural Biology, 2014, 185, 383-396.	1.3	60
82	Interaction of fengycin with stratum corneum mimicking model membranes: A calorimetry study. Colloids and Surfaces B: Biointerfaces, 2014, 121, 27-35.	2.5	14
83	Nonlamellar lipid liquid crystalline model surfaces for biofunctional studies. Soft Matter, 2013, 9, 8815.	1.2	13
84	Effects of surfactin on membrane models displaying lipid phase separation. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 801-815.	1.4	88
85	Formation of CaCO ₃ Deposits on Hard Surfacesâ€"Effect of Bulk Solution Conditions and Surface Properties. ACS Applied Materials & Surface Properties.	4.0	69
86	Adsorption of \hat{l} ±-Synuclein to Supported Lipid Bilayers: Positioning and Role of Electrostatics. ACS Chemical Neuroscience, 2013, 4, 1339-1351.	1.7	82
87	Polyelectrolyte Adsorption on Solid Surfaces: Theoretical Predictions and Experimental Measurements. Langmuir, 2013, 29, 12421-12431.	1.6	41
88	Tunable Adsorption of Soft Colloids on Model Biomembranes. ACS Nano, 2013, 7, 10752-10763.	7.3	32
89	Interactions of PAMAM Dendrimers with SDS at the Solid–Liquid Interface. Langmuir, 2013, 29, 5817-5831.	1.6	18
90	Adsorption of Lipid Liquid Crystalline Nanoparticles: Effects of Particle Composition, Internal Structure, and Phase Behavior. Langmuir, 2012, 28, 10688-10696.	1.6	25

#	Article	IF	CITATIONS
91	Adsorption of Lipid Liquid Crystalline Nanoparticles on Cationic, Hydrophilic, and Hydrophobic Surfaces. ACS Applied Materials & Surfaces, 2012, 4, 2643-2651.	4.0	36
92	Experimental Study of Amyloidogenic Protein Adsorption to Supported Lipid Bilayers. Biophysical Journal, 2012, 102, 496a-497a.	0.2	0
93	Mapping the location of grafted PNIPAAM in mesoporous SBA-15 silica using gas adsorption analysis. Physical Chemistry Chemical Physics, 2012, 14, 5651.	1.3	24
94	Multilayers at Interfaces of an Oppositely Charged Polyelectrolyte/Surfactant System Resulting from the Transport of Bulk Aggregates under Gravity. Journal of Physical Chemistry B, 2012, 116, 7981-7990.	1.2	40
95	ssRNA base pairing at a bilayer interface can be controlled by the acyl chain order. Soft Matter, 2012, 8, 10428.	1.2	7
96	Mixtures of Cationic Copolymers and Oppositely Charged Surfactants: Effect of Polymer Charge Density and Ionic Strength on the Adsorption Behavior at the Silica–Aqueous Interface. ACS Applied Materials & Density Interfaces, 2012, 4, 1500-1511.	4.0	28
97	RNA and DNA Association to Zwitterionic and Charged Monolayers at the Air–Liquid Interface. Langmuir, 2012, 28, 9621-9633.	1.6	19
98	Aggregation Behavior of Bovine κ- and β-Casein Studied with Small Angle Neutron Scattering, Light Scattering, and Cryogenic Transmission Electron Microscopy. Langmuir, 2012, 28, 13577-13589.	1.6	31
99	Horse heart cytochrome c entrapped into the hydrated liquid-crystalline phases of phytantriol: X-ray diffraction and Raman spectroscopic characterization. Journal of Colloid and Interface Science, 2012, 378, 232-240.	5.0	11
100	Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium) Tj ETQq0 0 0 rgBT /Ov Journal of Physical Chemistry B, 2011, 115, 15202-15213.	erlock 10 1.2	Tf 50 387 Td 57
101	Surface Deposition and Phase Behavior of Oppositely Charged Polyion–Surfactant Ion Complexes. Delivery of Silicone Oil Emulsions to Hydrophobic and Hydrophilic Surfaces. ACS Applied Materials & Amp; Interfaces, 2011, 3, 2451-2462.	4.0	31
102	Spreading Dynamics of a Functionalized Polymer Latex. ACS Applied Materials & Spreading Dynamics of a Functionalized Polymer Latex. ACS Applied Materials & Spreading Dynamics of a Functionalized Polymer Latex. ACS Applied Materials & Spreading Dynamics of a Functionalized Polymer Latex. ACS Applied Materials & Spreading Dynamics of a Functionalized Polymer Latex. ACS Applied Materials & Spreading Dynamics of a Functionalized Polymer Latex. ACS Applied Materials & Spreading Dynamics of a Functionalized Polymer Latex. ACS Applied Materials & Spreading Dynamics of a Functionalized Polymer Latex. ACS Applied Materials & Spreading Dynamics	4.0	6
103	Lipase Action on Self-Assembled Lipid Liquid Crystalline Nanoparticles. Biophysical Journal, 2011, 100, 503a.	0.2	O
104	DNA condensation using cationic dendrimersâ€"morphology and supramolecular structure of formed aggregates. Soft Matter, 2011, 7, 4577.	1.2	76
105	Structure of DNA–Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry. Langmuir, 2011, 27, 12506-12514.	1.6	12
106	Condensation of DNA using poly(amido amine) dendrimers: effect of salt concentration on aggregate morphology. Soft Matter, 2011, 7, 760-768.	1.2	32
107	Adsorption of Branched-Linear Polyethyleneimine–Ethylene Oxide Conjugate on Hydrophilic Silica Investigated by Ellipsometry and Monte Carlo Simulations. Langmuir, 2011, 27, 9961-9971.	1.6	16
108	Co-adsorption of \hat{l}^2 -casein and calcium phosphate nanoclusters (CPN) at hydrophilic and hydrophobic solid \hat{a} solution interfaces studied by neutron reflectometry. Food Hydrocolloids, 2011, 25, 724-733.	5.6	9

#	Article	IF	CITATIONS
109	DNA Binding to Zwitterionic Model Membranes. Langmuir, 2010, 26, 4965-4976.	1.6	49
110	Rna-Lipid Interaction At the Air Liquid Interface. Biophysical Journal, 2010, 98, 77a.	0.2	0
111	New Perspective on the Cliff Edge Peak in the Surface Tension of Oppositely Charged Polyelectrolyte/Surfactant Mixtures. Journal of Physical Chemistry Letters, 2010, 1, 3021-3026.	2.1	61
112	Enzymatic Activity of Lipaseâ^'Nanoparticle Conjugates and the Digestion of Lipid Liquid Crystalline Assemblies. Langmuir, 2010, 26, 13590-13599.	1.6	25
113	Linear <i>ds</i> DNA Partitions Spontaneously into the Inverse Hexagonal Lyotropic Liquid Crystalline Phases of Phospholipids. Journal of the American Chemical Society, 2010, 132, 9728-9732.	6.6	19
114	Surface Deposition and Phase Behavior of Oppositely Charged Polyionâ^'Surfactant Ion Complexes. 2. A Means to Deliver Silicone Oil to Hydrophilic Surfaces. ACS Applied Materials & Samp; Interfaces, 2010, 2, 143-156.	4.0	37
115	RNA and DNA interactions with zwitterionic and charged lipid membranes — A DSC and QCM-D study. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 829-838.	1.4	67
116	On the Ability of PAMAM Dendrimers and Dendrimer/DNA Aggregates To Penetrate POPC Model Biomembranes. Journal of Physical Chemistry B, 2010, 114, 7229-7244.	1.2	53
117	Interaction of DNA-PAMAM Dendrimers with a Model Biological Membrane. Biophysical Journal, 2010, 98, 626a.	0.2	0
118	Interactions between DNA and Poly(amido amine) Dendrimers on Silica Surfaces. Langmuir, 2010, 26, 8625-8635.	1.6	35
119	Surface Adsorption and Phase Separation of Oppositely Charged Polyionâ-'Surfactant Ion Complexes: 3. Effects of Polyion Hydrophobicity. Langmuir, 2010, 26, 9357-9367.	1.6	27
120	Adsorption of Intact Cubic Liquid Crystalline Nanoparticles on Hydrophilic Surfaces: Lateral Organization, Interfacial Stability, Layer Structure, and Interaction Mechanism. Journal of Physical Chemistry C, 2009, 113, 4483-4494.	1.5	20
121	Neutron Reflectivity Studies of the Interaction of Cubic-Phase Nanoparticles with Phospholipid Bilayers of Different Coverage. Langmuir, 2009, 25, 4009-4020.	1.6	51
122	Watching DNA Condensation Induced by Poly(amido amine) Dendrimers with Time-Resolved Cryo-TEM. Langmuir, 2009, 25, 12466-12470.	1.6	44
123	Effects of Aggregates on Mixed Adsorption Layers of Poly(ethylene imine) and Sodium Dodecyl Sulfate at the Air/Liquid Interface. Langmuir, 2009, 25, 4036-4046.	1.6	55
124	Surface Deposition and Phase Behavior of Oppositely Charged Polyion/Surfactant Ion Complexes. 1. Cationic Guar versus Cationic Hydroxyethylcellulose in Mixtures with Anionic Surfactants. ACS Applied Materials & Deposited Programmer (2009), 1, 2431-2442.	4.0	70
125	The Delivery of Lipidic Compounds to Model Membrane Interfaces by Non-lamellar Liquid Crystalline Nano-particles. Biophysical Journal, 2009, 96, 19a.	0.2	0
126	Condensing DNA with poly(amido amine) dendrimers of different generations: means of controlling aggregate morphology. Soft Matter, 2009, 5, 2310.	1.2	49

#	Article	IF	Citations
127	Interaction of sodium dodecyl sulfate and high charge density comb polymers at the silica/water interface. Soft Matter, 2009, 5, 3646.	1.2	10
128	Interaction between Lamellar (Vesicles) and Nonlamellar Lipid Liquid-Crystalline Nanoparticles as Studied by Time-Resolved Small-Angle X-ray Diffraction. Langmuir, 2009, 25, 3999-4008.	1.6	41
129	Adsorption Of DNA And PAMAM Dendrimers - At Silica Surfaces And Model Membranes. Biophysical Journal, 2009, 96, 604a.	0.2	0
130	Analytical Model Study of Dendrimer/DNA Complexes. Biomacromolecules, 2009, 10, 1720-1726.	2.6	32
131	Thermomyces lanuginosus lipase in the liquid-crystalline phases of aqueous phytantriol: X-ray diffraction and vibrational spectroscopic studies. Biophysical Chemistry, 2008, 134, 144-156.	1.5	44
132	Effect of Fengycin, a Lipopeptide Produced by Bacillus subtilis, on Model Biomembranes. Biophysical Journal, 2008, 94, 2667-2679.	0.2	194
133	Neutron reflectometry to investigate the delivery of lipids and DNA to interfaces (Review). Biointerphases, 2008, 3, FB64-FB82.	0.6	22
134	Protein/Emulsifier Interactions., 2008,, 89-171.		18
135	Adsorption of cubic liquid crystalline nanoparticles on model membranes. Soft Matter, 2008, 4, 2267.	1.2	56
136	Novel evaluation method of neutron reflectivity data applied to stimulus-responsive polymer brushes. Soft Matter, 2008, 4, 500.	1.2	21
137	Competitive Adsorption of Neutral Comb Polymers and Sodium Dodecyl Sulfate at the Air/Water Interface. Journal of Physical Chemistry B, 2008, 112, 7410-7419.	1.2	14
138	Forces between Hydrophilic Surfaces Adsorbed with Apolipoprotein All Alpha Helices. Langmuir, 2008, 24, 8568-8575.	1.6	9
139	Cyclodextrinâ^'Surfactant Complex: A New Route in DNA Decompaction. Biomacromolecules, 2008, 9, 772-775.	2.6	37
140	Interfacial Behavior of Ferrocene- and 1,4-Naphthoquinone-based Compounds, and Their Mixtures with Monoolein at the Air/Water Interface. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 1093-1100.	0.3	2
141	Liquid Crystalline Phases and Their Dispersions in Aqueous Mixtures of Glycerol Monooleate and Glyceryl Monooleyl Ether. Langmuir, 2007, 23, 496-503.	1.6	45
142	Modified stainless steel surfaces targeted to reduce fouling $\hat{a}\in$ Evaluation of fouling by milk components. Journal of Food Engineering, 2007, 80, 1176-1187.	2.7	120
143	Dynamic Light Scattering and Fluorescence Study of the Interaction between Double-Stranded DNA and Poly(amido amine) Dendrimers. Biomacromolecules, 2007, 8, 1557-1563.	2.6	97
144	Thiol-Specific and Nonspecific Interactions between DNA and Gold Nanoparticles. Langmuir, 2006, 22, 3294-3299.	1.6	65

#	Article	IF	Citations
145	Interfacial Behavior of Cubic Liquid Crystalline Nanoparticles at Hydrophilic and Hydrophobic Surfaces. Langmuir, 2006, 22, 9169-9174.	1.6	34
146	Hexagonal Liquid-crystalline Nanoparticles in Aqueous Mixtures of Glyceryl Monooleyl Ether and Pluronic F127. Chemistry Letters, 2006, 35, 830-831.	0.7	13
147	Formation of polyelectrolyte–surfactant complexes on surfaces. Advances in Colloid and Interface Science, 2006, 123-126, 105-123.	7.0	167
148	Effect of surface and bulk solution properties on the adsorption of whey protein onto steel surfaces at high temperature. Journal of Food Engineering, 2006, 73, 174-189.	2.7	38
149	Whey protein adsorption onto steel surfaces—effect of temperature, flow rate, residence time and aggregation. Journal of Food Engineering, 2006, 74, 468-483.	2.7	43
150	An X-ray diffraction study of alterations in bovine lung surfactant bilayer structures induced by albumin. Chemistry and Physics of Lipids, 2006, 144, 137-145.	1.5	26
151	Cationic Amphiphilic Polyelectrolytes and Oppositely Charged Surfactants at the Silicaâ^'Aqueous Interface. Langmuir, 2005, 21, 4490-4502.	1.6	13
152	Fengycin interaction with lipid monolayers at the air–aqueous interface—implications for the effect of fengycin on biological membranes. Journal of Colloid and Interface Science, 2005, 283, 358-365.	5.0	146
153	DNA and cationic surfactants at solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 33-43.	2.3	3
154	The interaction between DNA and cationic lipid films at the air–water interface. Journal of Colloid and Interface Science, 2005, 286, 166-175.	5.0	50
155	Adsorption and Aggregation of Cationic Amphiphilic Polyelectrolytes on Silica. Langmuir, 2005, 21, 2855-2864.	1.6	31
156	Equilibrium Aspects of Polycation Adsorption on Silica Surface: How the Adsorbed Layer Responds to Changes in Bulk Solutionâ€. Langmuir, 2005, 21, 5872-5881.	1.6	68
157	Formation of a Liquid Crystalline Phase from Phosphatidylcholine at the Oilâ^'Aqueous Interface. Langmuir, 2005, 21, 2804-2810.	1.6	11
158	Competitive Adsorption between Î ² -Casein or Î ² -Lactoglobulin and Model Milk Membrane Lipids at Oilâ ² Water Interfaces. Journal of Agricultural and Food Chemistry, 2005, 53, 716-724.	2.4	40
159	Interaction between DNA and Charged Colloids Could Be Hydrophobically Driven. Biomacromolecules, 2005, 6, 832-837.	2.6	35
160	SANS Study of the Interactions among DNA, a Cationic Surfactant, and Polystyrene Latex Particles. Langmuir, 2005, 21, 3578-3583.	1.6	25
161	Ellipsometry Studies of Nonionic Surfactant Adsorption at the Oilâ-'Water Interface. Langmuir, 2005, 21, 149-159.	1.6	21
162	DNA Compaction onto Hydrophobic Surfaces by Different Cationic Surfactants. Langmuir, 2005, 21, 6495-6502.	1.6	15

#	Article	IF	Citations
163	Adsorption of Cationic Cellulose Derivatives/Anionic Surfactant Complexes onto Solid Surfaces. I. Silica Surfaces. Langmuir, 2004, 20, 1753-1762.	1.6	66
164	Interactions of Cyclic AMP and Its Dibutyryl Analogue with a Lipid Layer in the Aqueous Mixtures of Monoolein Preparation and Dioleoyl Phosphatidylcholine as Probed by X-Ray Diffraction and Raman Spectroscopy. Journal of Biological Physics, 2004, 30, 83-96.	0.7	3
165	DNA and Cationic Surfactant Complexes at Hydrophilic Surfaces. An Ellipsometry and Surface Force Study. Langmuir, 2004, 20, 8597-8603.	1.6	39
166	Modified stainless steel surfaces targeted to reduce fouling––surface characterization. Journal of Food Engineering, 2004, 64, 63-79.	2.7	115
167	Cryo-TEM of isolated milk fat globule membrane structures in cream. Physical Chemistry Chemical Physics, 2004, 6, 1518-1523.	1.3	35
168	\hat{l}^2 -Casein Adsorption at the Silicon Oxide-Aqueous Solution Interface: \hat{A} Calcium Ion Effects. Biomacromolecules, 2004, 5, 319-325.	2.6	11
169	Adsorption of Cationic Cellulose Derivative/Anionic Surfactant Complexes onto Solid Surfaces. II. Hydrophobized Silica Surfaces. Langmuir, 2004, 20, 6692-6701.	1.6	63
170	DNA Compaction by cationic surfactant in solution and at polystyrene particle solution interfaces: a dynamic light scattering study. Physical Chemistry Chemical Physics, 2004, 6, 1603-1607.	1.3	63
171	DNA Compaction at Hydrophobic Surfaces Induced by a Cationic Amphiphileâ€. Langmuir, 2003, 19, 7712-7718.	1.6	56
172	The bilayer melting transition in lung surfactant bilayers: the role of cholesterol. European Biophysics Journal, 2003, 31, 633-636.	1.2	23
173	Adsorption of cationic, anionic and hydrophobically modified polyacrylamides on silica surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 231, 195-205.	2.3	65
174	Phase equilibria of model milk membrane lipid systems. Chemistry and Physics of Lipids, 2003, 125, 59-68.	1.5	11
175	Vesicle formation and other structures in aqueous dispersions of monoolein and sodium oleate. Journal of Colloid and Interface Science, 2003, 257, 310-320.	5.0	47
176	Ellipsometric studies of nonionic block copolymers adsorbed at the solid/water and oil/water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225, 181-192.	2.3	13
177	Milk membrane lipid vesicle structures studied with Cryo-TEM. Colloids and Surfaces B: Biointerfaces, 2003, 31, 257-264.	2.5	29
178	Towards redox active liquid crystalline phases of lipids: a monoolein/water system with entrapped derivatives of ferrocene. Chemistry and Physics of Lipids, 2003, 123, 87-97.	1.5	27
179	Interactions between Proteins and Polar Lipids. Food Additives, 2003, , .	0.1	0
180	Enhanced efficacy of porcine lung surfactant extract by utilization of its aqueous swelling dynamics. Clinical Physiology, 2002, 22, 39-48.	0.7	0

#	Article	IF	Citations
181	Acyl migration and hydrolysis in monoolein-based systems. , 2002, , 41-46.		35
182	Effect of Lipase on Different Lipid Liquid Crystalline Phases Formed by Oleic Acid Based Acylglycerols in Aqueous Systems. Langmuir, 2002, 18, 8972-8981.	1.6	40
183	New Experimental Setup To Use Ellipsometry To Study Liquidâ^'Liquid and Liquidâ^'Solid Interfaces. Langmuir, 2002, 18, 6437-6444.	1.6	55
184	Effect of Lipase on Monoolein-Based Cubic Phase Dispersion (Cubosomes) and Vesicles. Journal of Physical Chemistry B, 2002, 106, 10492-10500.	1.2	80
185	Analytical Approach for the Lucas–Washburn Equation. Journal of Colloid and Interface Science, 2002, 250, 415-421.	5.0	213
186	Introduction for lipid and lipase special issue. Colloids and Surfaces B: Biointerfaces, 2002, 26, 1-2.	2.5	0
187	Lipase action on a monoolein/sodium oleate aqueous cubic liquid crystalline phase—a NMR and X-ray diffraction study. Colloids and Surfaces B: Biointerfaces, 2002, 26, 159-171.	2.5	30
188	On the interaction between adsorbed layers of monoolein and the lipase action on the formed layers. Colloids and Surfaces B: Biointerfaces, 2002, 26, 172-182.	2.5	16
189	Enhanced efficacy of porcine lung surfactant extract by utilization of its aqueous swelling dynamics. Clinical Physiology and Functional Imaging, 2002, 22, 39-48.	0.5	16
190	Phase Behavior and Aggregate Formation for the Aqueous Monoolein System Mixed with Sodium Oleate and Oleic Acid. Langmuir, 2001, 17, 7742-7751.	1.6	146
191	Î ² -Casein Adsorption at the Hydrophobized Silicon Oxideâ [^] Aqueous Solution Interface and the Effect of Added Electrolyte. Biomacromolecules, 2001, 2, 278-287.	2.6	35
192	Interactions of cyclic AMP and its dibutyryl analogue with model membrane: X-ray diffraction and Raman spectroscopic study using cubic liquid–crystalline phases of monoolein. Biophysical Chemistry, 2001, 90, 75-87.	1.5	9
193	Emulsification of caraway essential oil in water by lecithin and β-lactoglobulin: emulsion stability and properties of the formed oil–aqueous interface. Colloids and Surfaces B: Biointerfaces, 2001, 20, 327-340.	2.5	54
194	Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking:Â A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study. Analytical Chemistry, 2001, 73, 5796-5804.	3.2	1,087
195	Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chemistry and Physics of Lipids, 2001, 109, 47-62.	1.5	161
196	Can a Dynamic Contact Angle Be Understood in Terms of a Friction Coefficient?. Journal of Colloid and Interface Science, 2000, 226, 199-204.	5.0	108
197	The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173, 181-192.	2.3	82
198	Characterization of the Liquidâ^'Crystalline Phases in the Glycerol Monooleate/Diglycerol Monooleate/Water System. Langmuir, 2000, 16, 6358-6365.	1.6	88

#	Article	IF	CITATIONS
199	Microscopy, SAXD, and NMR Studies of Phase Behavior of the Monooleinâ^'Dioleinâ^'Water System. Langmuir, 2000, 16, 10044-10054.	1.6	82
200	Wetting of β-casein layers adsorbed at the solid–aqueous interface. Colloids and Surfaces B: Biointerfaces, 1999, 15, 253-261.	2.5	14
201	Apparent chemical composition of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. International Journal of Food Science and Technology, 1999, 34, 543-556.	1.3	45
202	Some physico-chemical properties of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. International Journal of Food Science and Technology, 1999, 34, 587-601.	1.3	35
203	Interfacial properties of whey proteins at air/water and oil/water interfaces studied by dynamic drop tensiometry, ellipsometry and spreading kinetics. International Journal of Food Science and Technology, 1999, 34, 573-585.	1.3	26
204	Solubilization of ubiquinone-10 in the lamellar and bicontinuous cubic phases of aqueous monoolein. Chemistry and Physics of Lipids, 1999, 97, 167-179.	1.5	31
205	Evaluation of the structure of adsorbed layers of -casein from ellipsometry and surface force measurements. International Dairy Journal, 1999, 9, 313-317.	1.5	27
206	Adsorbed and spread films of bovine milk xanthine oxidase at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143, 221-231.	2.3	8
207	Binding of Sodium Dodecyl Sulphate and Dodecyl Trimethyl Ammonium Chloride to \hat{l}^2 -Lactoglobulin: A Calorimetric Study. International Dairy Journal, 1998, 8, 141-148.	1.5	76
208	A Surface Force, Light Scattering, and Osmotic Pressure Study of Semidilute Aqueous Solutions of Ethyl(hydroxyethyl)celluloseLong-Range Attractive Force between Two Polymer-Coated Surfaces. Langmuir, 1998, 14, 5877-5889.	1.6	22
209	Protein-lipid interactions. Studies in Interface Science, 1998, , 385-431.	0.0	4
210	Effect of Surface Properties and Added Electrolyte on the Structure of \hat{l}^2 -Casein Layers Adsorbed at the Solid/Aqueous Interface. Langmuir, 1997, 13, 5141-5147.	1.6	72
211	Thermodynamics of Transfer of Amphiphiles between the Liquidâ^'Air Interface and a Solid SurfaceWetting Tension Study of Langmuirâ^'Blodgett Films. Langmuir, 1997, 13, 1746-1757.	1.6	24
212	Structural Effects, Mobility, and Redox Behavior of Vitamin K1Hosted in the Monoolein/Water Liquid Crystalline Phases. Langmuir, 1997, 13, 5476-5483.	1.6	115
213	Forces between Adsorbed Layers of β-Casein. Langmuir, 1997, 13, 6219-6225.	1.6	48
214	Protein/Emulsifier Interactions. , 1997, , 95-146.		52
215	Calorimetric studies of interactions between \hat{l}^2 -lactoglobulin and phospholipids in solutions. International Dairy Journal, 1997, 7, 87-92.	1.5	35
216	An FT-IR study of the effects of distearoylphosphatidylglycerol and cytochrome c on the molecular organization of the monoolein-water cubic liquid-crystalline phase. Vibrational Spectroscopy, 1997, 15, 91-101.	1.2	19

#	Article	IF	CITATIONS
217	Bovine Milk Sphingomyelin at the Air/Water Interface and Its Interaction with Xanthine Oxidase. Langmuir, 1996, 12, 5856-5862.	1.6	11
218	Interaction between \hat{I}^2 -Lactoglobulin and Phospholipids at the Air/Water Interface. Langmuir, 1996, 12, 2791-2797.	1.6	96
219	A Cubic Monooleinâ^'Cytochromecâ^'Water Phase:Â X-ray Diffraction, FT-IR, Differential Scanning Calorimetric, and Electrochemical Studies. The Journal of Physical Chemistry, 1996, 100, 11766-11774.	2.9	118
220	A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 311-320.	2.3	82
221	Surface Pressure Study of Hemin, Microperoxidase-8, -11, and Cytochrome c Adsorption at the Air–Water Interface. Journal of Colloid and Interface Science, 1996, 178, 303-308.	5.0	4
222	Diffusivity measurements using holographic laser interferometry in a cubic lipid-water phase. Chemistry and Physics of Lipids, 1996, 84, 1-12.	1.5	22
223	Effects of distearoylphosphatidylglycerol and lysozyme on the structure of the monoolein-water cubic phase: X-ray diffraction and Raman scattering studies. Chemistry and Physics of Lipids, 1996, 84, 123-138.	1.5	66
224	Protein interactions at solid surfaces. Advances in Colloid and Interface Science, 1995, 57, 161-227.	7.0	207
225	Forces between Charged Macroscopic Surfaces in Polyamine Solutions. The Journal of Physical Chemistry, 1994, 98, 2602-2607.	2.9	12
226	Competitive and Sequential Adsorption of \hat{l}^2 -Casein and \hat{l}^2 -Lactoglobulin on Hydrophobic Surfaces and the Interfacial Structure of \hat{l}^2 -Casein. Journal of Colloid and Interface Science, 1994, 162, 151-162.	5.0	70
227	The Effect of Solution Behavior of Insulin on Interactions between Adsorbed Layers of Insulin. Journal of Colloid and Interface Science, 1994, 164, 136-150.	5.0	72
228	An Ellipsometric and Electrochemical Study of Microperoxidase-8 and -11 Adsorption on Platinum and Gold Surfaces. Journal of Colloid and Interface Science, 1994, 164, 181-189.	5.0	13
229	Electrochemical biosensors for glucose, lactate, urea, and creatinine based on enzymes entrapped in a cubic liquid crystalline phase. Analytica Chimica Acta, 1994, 289, 155-162.	2.6	123
230	Degradation of water-soluble fibre polysaccharides in carrots after different types of processing. Food Chemistry, 1993, 47, 169-176.	4.2	17
231	Adsorption of insulin on solid surfaces in relation to the surface properties of the monomeric and oligomeric forms. Journal of Colloid and Interface Science, 1991, 144, 145-152.	5.0	33
232	Direct measurements of the interaction between layers of insulin adsorbed on hydrophobic surfaces. Journal of Colloid and Interface Science, 1989, 130, 457-466.	5.0	29
233	An ellipsometry study of ionic surfactant adsorption on chromium surfaces. Journal of Colloid and Interface Science, 1989, 128, 303-312.	5.0	55
234	Adsorption of insulin on metal surfaces in relation to association behavior. Journal of Colloid and Interface Science, 1988, 122, 557-566.	5.0	47

#	Article	IF	CITATIONS
235	Ellipsometry for Studies of Protein Adsorption. Annals of the New York Academy of Sciences, 1987, 501, 545-547.	1.8	0
236	Adsorption of \hat{l} ±-lactalbumin and \hat{l}^2 -lactoglobulin on metal surfaces versus temperature. Journal of Colloid and Interface Science, 1987, 119, 383-390.	5.0	93
237	Sequential and competitive adsorption of \hat{l}^2 -lactoglobulin and \hat{l}^2 -casein on metal surfaces. Journal of Colloid and Interface Science, 1986, 111, 529-533.	5.0	79
238	Cleaning of polymer and metal surfaces studied by ellipsometry. Journal of Colloid and Interface Science, 1984, 99, 549-552.	5.0	13
239	DNA and DNA–Surfactant Complexes at Solid Surfaces. , 0, , 291-315.		2
240	Proteins: Association, Adsorption, and Aggregation., 0,, 6258-6281.		0
241	The Influence of pH on the Lipase Digestion of Nanosized Triolein, Diolein and Monoolein Films. , 0, 2, .		4