
JÃ'natas Santos Abrahão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2117119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human variation in the protein receptor ACE2 affects its binding affinity to SARS-CoV-2 in a variant-dependent manner. Journal of Biomolecular Structure and Dynamics, 2023, 41, 2947-2955.	3.5	0
2	In-Depth Characterization of the Chikungunya Virus Replication Cycle. Journal of Virology, 2022, 96, JVI0173221.	3.4	5
3	The Discovery of a New Mimivirus Isolate in Association with Virophage-Transpoviron Elements in Brazil Highlights the Main Genomic and Evolutionary Features of This Tripartite System. Viruses, 2022, 14, 206.	3.3	4
4	"Yaraviridae― a proposed new family of viruses infecting Acanthamoeba castellanii. Archives of Virology, 2022, 167, 711-715.	2.1	3
5	A Brief History of Giant Viruses' Studies in Brazilian Biomes. Viruses, 2022, 14, 191.	3.3	4
6	Isolation of Giant Viruses of <i>Acanthamoeba castellanii</i> . Current Protocols, 2022, 2, .	2.9	3
7	Pristimerin isolated from Salacia crassifolia (Mart. Ex. Schult.) G. Don. (Celastraceae) roots as a potential antibacterial agent against Staphylococcus aureus. Journal of Ethnopharmacology, 2021, 266, 113423.	4.1	12
8	Alohomora! What the entry mechanisms tell us about the evolution and diversification of giant viruses and their hosts. Current Opinion in Virology, 2021, 47, 79-85.	5.4	7
9	Comparative Analysis of Transcriptional Regulation Patterns: Understanding the Gene Expression Profile in Nucleocytoviricota. Pathogens, 2021, 10, 935.	2.8	3
10	The morphogenesis of different giant viruses as additional evidence for a common origin of Nucleocytoviricota. Current Opinion in Virology, 2021, 49, 102-110.	5.4	9
11	The Secret Life of Giant Viruses in the California Current. MSystems, 2021, 6, e0075121.	3.8	0
12	Analysis of a Marseillevirus Transcriptome Reveals Temporal Gene Expression Profile and Host Transcriptional Shift. Frontiers in Microbiology, 2020, 11, 651.	3.5	20
13	Structural and Proteomic Characterization of the Initiation of Giant Virus Infection. Cell, 2020, 181, 1046-1061.e6.	28.9	35
14	A virophage cross-species infection through mutant selection represses giant virus propagation, promoting host cell survival. Communications Biology, 2020, 3, 248.	4.4	15
15	Hypervirulence and cross-resistance to a clinical antifungal are induced by an environmental fungicide in Cryptococcus gattii. Science of the Total Environment, 2020, 740, 140135.	8.0	14
16	Yaravirus: A novel 80-nm virus infecting <i>Acanthamoeba castellanii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16579-16586.	7.1	41
17	Isolation and genomic characterization of a new mimivirus of lineage B from a Brazilian river. Archives of Virology, 2020, 165, 853-863.	2.1	3
18	Virus goes viral: an educational kit for virology classes. Virology Journal, 2020, 17, 13.	3.4	11

#	Article	IF	CITATIONS
19	Translating the language of giants: translation-related genes as a major contribution of giant viruses to the virosphere. Archives of Virology, 2020, 165, 1267-1278.	2.1	7
20	Microscopic Analysis of the Tupanvirus Cycle in Vermamoeba vermiformis. Frontiers in Microbiology, 2019, 10, 671.	3.5	21
21	Giant virus vs amoeba: fight for supremacy. Virology Journal, 2019, 16, 126.	3.4	19
22	Tupanvirus-infected amoebas are induced to aggregate with uninfected cells promoting viral dissemination. Scientific Reports, 2019, 9, 183.	3.3	33
23	Atypical Cowpox Virus Infection in Smallpox-Vaccinated Patient, France. Emerging Infectious Diseases, 2019, 25, 212-219.	4.3	18
24	Role of the R349 Gene and Its Repeats in the MIMIVIRE Defense System. Frontiers in Microbiology, 2019, 10, 1147.	3.5	13
25	Guarani Virophage, a New Sputnik-Like Isolate From a Brazilian Lake. Frontiers in Microbiology, 2019, 10, 1003.	3.5	19
26	Discovery and Further Studies on Giant Viruses at the IHU Mediterranee Infection That Modified the Perception of the Virosphere. Viruses, 2019, 11, 312.	3.3	23
27	Trapping the Enemy: Vermamoeba vermiformis Circumvents Faustovirus Mariensis Dissemination by Enclosing Viral Progeny inside Cysts. Journal of Virology, 2019, 93, .	3.4	20
28	The multiple origins of proteins present in tupanvirus particles. Current Opinion in Virology, 2019, 36, 25-31.	5.4	5
29	Human Infection with Orf Virus and Description of Its Whole Genome, France, 2017. Emerging Infectious Diseases, 2019, 25, 2197-2204.	4.3	24
30	In-depth analysis of the replication cycle of Orpheovirus. Virology Journal, 2019, 16, 158.	3.4	15
31	The soda lakes of Nhecolândia: A conservation opportunity for the Pantanal wetlands. Perspectives in Ecology and Conservation, 2019, 17, 9-18.	1.9	19
32	The Complex Nature of Tupanviruses. Advances in Virus Research, 2019, 103, 135-166.	2.1	18
33	New Isolates of Pandoraviruses: Contribution to the Study of Replication Cycle Steps. Journal of Virology, 2019, 93, .	3.4	23
34	"Tupanvirusâ€; a new genus in the family Mimiviridae. Archives of Virology, 2019, 164, 325-331.	2.1	23
35	Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nature Communications, 2018, 9, 749.	12.8	247
36	Lack of evidence of mimivirus replication in human PBMCs. Microbes and Infection, 2018, 20, 281-283.	1.9	9

Jônatas Santos Abrahão

#	Article	IF	CITATIONS
37	Morphologic and Genomic Analyses of New Isolates Reveal a Second Lineage of Cedratviruses. Journal of Virology, 2018, 92, .	3.4	21
38	Cedratvirus getuliensis replication cycle: an in-depth morphological analysis. Scientific Reports, 2018, 8, 4000.	3.3	32
39	Analyses of the Kroon Virus Major Capsid Gene and Its Transcript Highlight a Distinct Pattern of Gene Evolution and Splicing among Mimiviruses. Journal of Virology, 2018, 92, .	3.4	12
40	Vaccinia Virus among Domestic Dogs and Wild Coatis, Brazil, 2013–2015. Emerging Infectious Diseases, 2018, 24, 2338-2342.	4.3	16
41	A Gateway into Understanding the Unique Vertex of Samba Virus. Microscopy and Microanalysis, 2018, 24, 1438-1439.	0.4	1
42	Virome analyses of Hevea brasiliensis using small RNA deep sequencing and PCR techniques reveal the presence of a potential new virus. Virology Journal, 2018, 15, 184.	3.4	10
43	Rio Negro virophage: Sequencing of the near complete genome and transmission electron microscopy of viral factories and particles. Brazilian Journal of Microbiology, 2018, 49, 260-261.	2.0	14
44	Vaccinia virus in Feces and Urine of Wild Rodents from São Paulo State, Brazil. Viruses, 2018, 10, 51.	3.3	11
45	Putative Promoter Motif Analyses Reinforce the Evolutionary Relationships Among Faustoviruses, Kaumoebavirus, and Asfarvirus. Frontiers in Microbiology, 2018, 9, 1041.	3.5	32
46	Vaccinia Virus in Blood Samples of Humans, Domestic and Wild Mammals in Brazil. Viruses, 2018, 10, 42.	3.3	16
47	The Host Factor Early Growth Response Gene (EGR-1) Regulates Vaccinia virus Infectivity during Infection of Starved Mouse Cells. Viruses, 2018, 10, 140.	3.3	6
48	Ubiquitous giants: a plethora of giant viruses found in Brazil and Antarctica. Virology Journal, 2018, 15, 22.	3.4	37
49	Ocular Vaccinia Infection in Dairy Worker, Brazil. Emerging Infectious Diseases, 2018, 24, 161-162.	4.3	7
50	An Update on the Known Host Range of the Brazilian Vaccinia Virus: An Outbreak in Buffalo Calves. Frontiers in Microbiology, 2018, 9, 3327.	3.5	17
51	Mimiviruses and the Human Interferon System: Viral Evasion of Classical Antiviral Activities, But Inhibition By a Novel Interferon-β Regulated Immunomodulatory Pathway. Journal of Interferon and Cytokine Research, 2017, 37, 1-8.	1.2	11
52	c-Jun integrates signals from both MEK/ERK and MKK/JNK pathways upon vaccinia virus infection. Archives of Virology, 2017, 162, 2971-2981.	2.1	12
53	Cross-sectional study involving healthcare professionals in a Vaccinia virus endemic area. Vaccine, 2017, 35, 3281-3285.	3.8	4
54	Absence of vaccinia virus detection in a remote region of the Northern Amazon forests, 2005-2015. Archives of Virology, 2017, 162, 2369-2373.	2.1	3

#	Article	IF	CITATIONS
55	Filling Knowledge Gaps for Mimivirus Entry, Uncoating, and Morphogenesis. Journal of Virology, 2017, 91, .	3.4	42
56	The Investigation of Promoter Sequences of Marseilleviruses Highlights a Remarkable Abundance of the AAATATTT Motif in Intergenic Regions. Journal of Virology, 2017, 91, .	3.4	37
57	Detection of mimivirus genome and neutralizing antibodies in humans from Brazil. Archives of Virology, 2017, 162, 3205-3207.	2.1	4
58	Molecular evidence of Orthopoxvirus DNA in capybara (Hydrochoerus hydrochaeris) stool samples. Archives of Virology, 2017, 162, 439-448.	2.1	18
59	A subdose of fluconazole alters the virulence of <i>Cryptococcus gattii</i> during murine cryptococcosis and modulates type I interferon expression. Medical Mycology, 2017, 55, 203-212.	0.7	6
60	Promoter Motifs in NCLDVs: An Evolutionary Perspective. Viruses, 2017, 9, 16.	3.3	40
61	An Anthropocentric View of the Virosphere-Host Relationship. Frontiers in Microbiology, 2017, 8, 1673.	3.5	29
62	Genome Characterization of the First Mimiviruses of Lineage C Isolated in Brazil. Frontiers in Microbiology, 2017, 8, 2562.	3.5	16
63	Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review. Viruses, 2017, 9, 331.	3.3	71
64	The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses. PLoS Genetics, 2017, 13, e1006532.	3.5	36
65	Microscopic Characterization of the Brazilian Giant Samba Virus. Viruses, 2017, 9, 30.	3.3	15
66	Serologic and Molecular Evidence of Vaccinia Virus Circulation among Small Mammals from Different Biomes, Brazil. Emerging Infectious Diseases, 2017, 23, 931-938.	4.3	26
67	Detection of Vaccinia Virus in Urban Domestic Cats, Brazil. Emerging Infectious Diseases, 2017, 23, 360-362.	4.3	15
68	Microbiota is an essential element for mice to initiate a protective immunity against <i>Vaccinia virus</i> . FEMS Microbiology Ecology, 2016, 92, fiv147.	2.7	5
69	Detection of Vaccinia Virus in Dairy Cattle Serum Samples from 2009, Uruguay. Emerging Infectious Diseases, 2016, 22, 2174-2177.	4.3	12
70	Serro 2 Virus Highlights the Fundamental Genomic and Biological Features of a Natural Vaccinia Virus Infecting Humans. Viruses, 2016, 8, 328.	3.3	15
71	A Brazilian Marseillevirus Is the Founding Member of a Lineage in Family Marseilleviridae. Viruses, 2016, 8, 76.	3.3	74
72	Saudi Moumouvirus, the First Group B Mimivirus Isolated from Asia. Frontiers in Microbiology, 2016, 07, 2029.	3.5	8

#	Article	IF	CITATIONS
73	Seroprevalence of Orthopoxvirus in rural Brazil: insights into anti-OPV immunity status and its implications for emergent zoonotic OPV. Virology Journal, 2016, 13, 121.	3.4	18
74	Microscopic Evidence for a Stargate Structure in the Giant Virus, Samba Virus Microscopy and Microanalysis, 2016, 22, 1114-1115.	0.4	0
75	Giants among larges: how gigantism impacts giant virus entry into amoebae. Current Opinion in Microbiology, 2016, 31, 88-93.	5.1	24
76	Occurrence of Pseudocowpox virus associated to Bovine viral diarrhea virus-1, Brazilian Amazon. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 49, 70-75.	1.6	10
77	Vaccinia virus dissemination requires p21-activated kinase 1. Archives of Virology, 2016, 161, 2991-3002.	2.1	3
78	Natural <i>Vaccinia Virus</i> Infection: Diagnosis, Isolation, and Characterization. Current Protocols in Microbiology, 2016, 42, 14A.5.1-14A.5.43.	6.5	16
79	Culture of previously uncultured members of the human gut microbiota by culturomics. Nature Microbiology, 2016, 1, 16203.	13.3	735
80	The detection of Vaccinia virus confirms the high circulation of Orthopoxvirus in buffaloes living in geographical isolation, Marajó Island, Brazilian Amazon. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 46, 16-19.	1.6	7
81	Mimiviruses: Replication, Purification, and Quantification. Current Protocols in Microbiology, 2016, 41, 14G.1.1-14G.1.13.	6.5	8
82	The Large Marseillevirus Explores Different Entry Pathways by Forming Giant Infectious Vesicles. Journal of Virology, 2016, 90, 5246-5255.	3.4	103
83	Acanthamoeba and mimivirus interactions: the role of amoebal encystment and the expansion of the â€~Cheshire Cat' theory. Current Opinion in Microbiology, 2016, 31, 9-15.	5.1	10
84	Detection of <i>Vaccinia Virus</i> in Milk: Evidence of a Systemic and Persistent Infection in Experimentally Infected Cows. Foodborne Pathogens and Disease, 2015, 12, 898-903.	1.8	13
85	Outbreak of Severe Zoonotic Vaccinia Virus Infection, Southeastern Brazil. Emerging Infectious Diseases, 2015, 21, 695-698.	4.3	49
86	Modulation of the expression of mimivirus-encoded translation-related genes in response to nutrient availability during Acanthamoeba castellanii infection. Frontiers in Microbiology, 2015, 06, 539.	3.5	16
87	Isolation of new Brazilian giant viruses from environmental samples using a panel of protozoa. Frontiers in Microbiology, 2015, 6, 1086.	3.5	66
88	Niemeyer Virus: A New Mimivirus Group A Isolate Harboring a Set of Duplicated Aminoacyl-tRNA Synthetase Genes. Frontiers in Microbiology, 2015, 6, 1256.	3.5	23
89	Pan-Genome Analysis of Brazilian Lineage A Amoebal Mimiviruses. Viruses, 2015, 7, 3483-3499.	3.3	26
90	Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerging Infectious Diseases, 2015, 21, 2244-2246.	4.3	13

#	Article	IF	CITATIONS
91	Evaluating anti-Orthopoxvirus antibodies in individuals from Brazilian rural areas prior to the bovine vaccinia era. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 804-808.	1.6	9
92	Acanthamoeba polyphaga Mimivirus Prevents Amoebal Encystment-Mediating Serine Proteinase Expression and Circumvents Cell Encystment. Journal of Virology, 2015, 89, 2962-2965.	3.4	16
93	Oysters as hot spots for mimivirus isolation. Archives of Virology, 2015, 160, 477-482.	2.1	38
94	From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus. Viruses, 2015, 7, 1218-1237.	3.3	15
95	High positivity of mimivirus in inanimate surfaces of a hospital respiratory-isolation facility, Brazil. Journal of Clinical Virology, 2015, 66, 62-65.	3.1	13
96	Mimivirus Fibrils Are Important for Viral Attachment to the Microbial World by a Diverse Glycoside Interaction Repertoire. Journal of Virology, 2015, 89, 11812-11819.	3.4	53
97	Horizontal study of vaccinia virus infections in an endemic area: epidemiologic, phylogenetic and economic aspects. Archives of Virology, 2015, 160, 2703-2708.	2.1	10
98	Amoebas as mimivirus bunkers: increased resistance to UV light, heat and chemical biocides when viruses are carried by amoeba hosts. Archives of Virology, 2014, 159, 1039-43.	2.1	12
99	Could hantavirus circulation superpose areas of highly endemic vaccinia virus outbreaks? A retrospective seroepidemiological study in State of Minas Gerais. Revista Da Sociedade Brasileira De Medicina Tropical, 2014, 47, 778-782.	0.9	1
100	Spread of Vaccinia Virus to Cattle Herds, Argentina, 2011. Emerging Infectious Diseases, 2014, 20, 1576-1578.	4.3	19
101	Outbreak of herpangina in the Brazilian Amazon in 2009 caused by Enterovirus B. Archives of Virology, 2014, 159, 1155-1157.	2.1	9
102	A resourceful giant: APMV is able to interfere with the human type I interferon system. Microbes and Infection, 2014, 16, 187-195.	1.9	23
103	Growing a giant: Evaluation of the virological parameters for mimivirus production. Journal of Virological Methods, 2014, 207, 6-11.	2.1	9
104	Acanthamoeba polyphaga mimivirus and other giant viruses: an open field to outstanding discoveries. Virology Journal, 2014, 11, 120.	3.4	51
105	Intrafamilial Transmission of Vaccinia virus during a Bovine Vaccinia Outbreak in Brazil: A New Insight in Viral Transmission Chain. American Journal of Tropical Medicine and Hygiene, 2014, 90, 1021-1023.	1.4	13
106	Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad-spectrum antibiotics. International Journal of Antimicrobial Agents, 2014, 44, 117-124.	2.5	84
107	Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virology Journal, 2014, 11, 95.	3.4	87
108	Acanthamoeba polyphaga mimivirus Stability in Environmental and Clinical Substrates: Implications for Virus Detection and Isolation. PLoS ONE, 2014, 9, e87811.	2.5	16

Jônatas Santos Abrahão

#	Article	IF	CITATIONS
109	Fluconazole Alters the Polysaccharide Capsule of Cryptococcus gattii and Leads to Distinct Behaviors in Murine Cryptococcosis. PLoS ONE, 2014, 9, e112669.	2.5	36
110	Mimivirus Circulation among Wild and Domestic Mammals, Amazon Region, Brazil. Emerging Infectious Diseases, 2014, 20, 469-472.	4.3	24
111	Amazonian Head Lice-Specific Genotypes Are Putatively Pre-Columbian. American Journal of Tropical Medicine and Hygiene, 2013, 88, 1180-1184.	1.4	5
112	Detection of <i>Vaccinia Virus</i> in Blood and Faeces of Experimentally Infected Cows. Transboundary and Emerging Diseases, 2013, 60, 552-555.	3.0	9
113	Bovine vaccinia, a systemic infection: Evidence of fecal shedding, viremia and detection in lymphoid organs. Veterinary Microbiology, 2013, 162, 103-111.	1.9	26
114	Vaccinia Virus in Household Environment during Bovine Vaccinia Outbreak, Brazil. Emerging Infectious Diseases, 2013, 19, 2045-7.	4.3	10
115	Reemergence of Vaccinia Virus during Zoonotic Outbreak, Pará State, Brazil. Emerging Infectious Diseases, 2013, 19, 2017-2020.	4.3	19
116	Group 1 Vaccinia virus Zoonotic Outbreak in Maranhão State, Brazil. American Journal of Tropical Medicine and Hygiene, 2013, 89, 1142-1145.	1.4	22
117	Multifocal Cutaneous Orf Virus Infection in Goats in the Amazon Region, Brazil. Vector-Borne and Zoonotic Diseases, 2012, 12, 336-340.	1.5	20
118	Looking back: a genetic retrospective study of Brazilian <i>Orf virus</i> isolates. Veterinary Record, 2012, 171, 476-476.	0.3	14
119	Filling One More Gap: Experimental Evidence of Horizontal Transmission of Vaccinia Virus Between Bovines and Rodents. Vector-Borne and Zoonotic Diseases, 2012, 12, 61-64.	1.5	15
120	Immune Modulation in Primary <i>Vaccinia virus</i> Zoonotic Human Infections. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	7
121	Virucidal activity of chemical biocides against mimivirus, a putative pneumonia agent. Journal of Clinical Virology, 2012, 55, 323-328.	3.1	19
122	Characterization of a New Vaccinia virus Isolate Reveals the C23L Gene as a Putative Genetic Marker for Autochthonous Group 1 Brazilian Vaccinia virus. PLoS ONE, 2012, 7, e50413.	2.5	8
123	Group 2 Vaccinia Virus, Brazil. Emerging Infectious Diseases, 2012, 18, 2035-2038.	4.3	14
124	Vaccinia Virus Zoonotic Infection, São Paulo State, Brazil. Emerging Infectious Diseases, 2011, 18, 189-191.	4.3	35
125	Serologic Evidence of Orthopoxvirus Infection in Buffaloes, Brazil. Emerging Infectious Diseases, 2011, 18, 698-700.	4.3	5
126	Zoonotic Brazilian Vaccinia virus: From field to therapy. Antiviral Research, 2011, 92, 150-163.	4.1	71

#	Article	IF	CITATIONS
127	Assessing the variability of Brazilian Vaccinia virus isolates from a horse exanthematic lesion: coinfection with distinct viruses. Archives of Virology, 2011, 156, 275-283.	2.1	46
128	A-type inclusion bodies: a factor influencing cowpox virus lesion pathogenesis. Archives of Virology, 2011, 156, 617-628.	2.1	7
129	Rapid detection of <i>Orthopoxvirus</i> by semiâ€nested PCR directly from clinical specimens: A useful alternative for routine laboratories. Journal of Medical Virology, 2010, 82, 692-699.	5.0	28
130	Vaccinia Virus Infection in Monkeys, Brazilian Amazon. Emerging Infectious Diseases, 2010, 16, 976-979.	4.3	49
131	Human Vaccinia virus and Pseudocowpox virus co-infection: Clinical description and phylogenetic characterization. Journal of Clinical Virology, 2010, 48, 69-72.	3.1	48
132	Vaccinia Virus Is Not Inactivated After Thermal Treatment and Cheese Production Using Experimentally Contaminated Milk. Foodborne Pathogens and Disease, 2010, 7, 1491-1496.	1.8	20
133	Zoonotic Vaccinia Virus: Clinical and Immunological Characteristics in a Naturally Infected Patient. Clinical Infectious Diseases, 2009, 48, e37-e40.	5.8	38
134	Long-lasting stability of Vaccinia virus strains in murine feces: implications for virus circulation and environmental maintenance. Archives of Virology, 2009, 154, 1551-1553.	2.1	26
135	Natural human infections with Vaccinia virus during bovine vaccinia outbreaks. Journal of Clinical Virology, 2009, 44, 308-313.	3.1	80
136	One More Piece in the VACV Ecological Puzzle: Could Peridomestic Rodents Be the Link between Wildlife and Bovine Vaccinia Outbreaks in Brazil?. PLoS ONE, 2009, 4, e7428.	2.5	89
137	Nested-multiplex PCR detection of Orthopoxvirus and Parapoxvirus directly from exanthematic clinical samples. Virology Journal, 2009, 6, 140.	3.4	35
138	Detection and phylogenetic analysis of Orf virus from sheep in Brazil: a case report. Virology Journal, 2009, 6, 47.	3.4	39
139	Bovine Vaccinia Outbreaks: Detection and Isolation of Vaccinia Virus in Milk Samples. Foodborne Pathogens and Disease, 2009, 6, 1141-1146.	1.8	36
140	Vaccinia virus: shedding and horizontal transmission in a murine model. Journal of General Virology, 2008, 89, 2986-2991.	2.9	26
141	Virulence in Murine Model Shows the Existence of Two Distinct Populations of Brazilian Vaccinia virus Strains. PLoS ONE, 2008, 3, e3043.	2.5	37
142	Bovine Vaccinia Outbreaks: Detection and Isolation of Vaccinia Virus in Milk Samples. Foodborne Pathogens and Disease, 0, , 110306131211089.	1.8	0