Qirong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2116793/publications.pdf

Version: 2024-02-01

687363 713466 1,104 21 13 21 h-index citations g-index papers 21 21 21 1461 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Archives of Toxicology, 2014, 88, 1309-1326.	4.2	220
2	Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism. Annual Review of Pharmacology and Toxicology, 2018, 58, 471-507.	9.4	195
3	Fipronil insecticide toxicology: oxidative stress and metabolism. Critical Reviews in Toxicology, 2016, 46, 876-899.	3.9	127
4	JAK/STAT Pathway Plays a Critical Role in the Proinflammatory Gene Expression and Apoptosis of RAW264.7 Cells Induced by Trichothecenes as DON and T-2 Toxin. Toxicological Sciences, 2012, 127, 412-424.	3.1	108
5	Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Archives of Toxicology, 2017, 91, 3737-3785.	4.2	91
6	Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds <i>in vivo and in vitro</i>). Drug Metabolism Reviews, 2017, 49, 395-437.	3.6	74
7	An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Archives of Toxicology, 2020, 94, 3645-3669.	4.2	50
8	Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicology Letters, 2018, 286, 96-107.	0.8	48
9	Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food and Chemical Toxicology, 2017, 102, 11-23.	3.6	45
10	The critical role of p16/Rb pathway in the inhibition of GH3 cell cycle induced by T-2 toxin. Toxicology, $2018,400-401,28-39$.	4.2	32
11	Protective effects of mannan \hat{I}^2 -glucans from yeast cell wall on the deoxyniyalenol-induced oxidative stress and autophagy in IPEC-J2 cells. International Journal of Biological Macromolecules, 2019, 135, 619-629.	7.5	27
12	DNA methylation and RASSF4 expression are involved in T-2 toxin-induced hepatotoxicity. Toxicology, 2019, 425, 152246.	4.2	18
13	Nitric oxide mediates apoptosis and mitochondrial dysfunction and plays a role in growth hormone deficiency by nivalenol in GH3 cells. Scientific Reports, 2017, 7, 17079.	3.3	15
14	PPAR- \hat{l}^3 with its anti-fibrotic action could serve as an effective therapeutic target in T-2 toxin-induced cardiac fibrosis of rats. Food and Chemical Toxicology, 2021, 152, 112183.	3.6	12
15	Differentially expressed genes in response to cyadox in swine liver analyzed by DDRT-PCR. Research in Veterinary Science, 2018, 118, 72-78.	1.9	9
16	Signaling pathways involved in the expression of SZNF and the target genes binding with SZNF related to cyadox. Biomedicine and Pharmacotherapy, 2018, 108, 1879-1893.	5.6	7
17	Molecular Characterization and Biological Function of a Novel LncRNA CRNG in Swine. Frontiers in Pharmacology, 2019, 10, 539.	3.5	7
18	Cytochrome P450 enzymes mediated by DNA methylation is involved in deoxynivalenol-induced hepatoxicity in piglets. Animal Nutrition, 2022, 9, 269-279.	5.1	7

QIRONG LU

#	Article	IF	CITATIONS
19	Epigenetic upregulation of galanin-like peptide mediates deoxynivalenol induced-growth inhibition in pituitary cells. Toxicology and Applied Pharmacology, 2020, 403, 115166.	2.8	6
20	Cyadox regulates the transcription of different genes by activation of the PI3K signaling pathway in porcine primary hepatocytes . Journal of Cellular Biochemistry, 2019, 120, 7623-7634.	2.6	5
21	The NO-dependent caspase signaling pathway is a target of deoxynivalenol in growth inhibition in vitro. Food and Chemical Toxicology, 2021, 158, 112629.	3.6	1