Amos Tanay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2116747/publications.pdf

Version: 2024-02-01

65 papers 18,383 citations

57758 44 h-index 106344 65 g-index

74 all docs

74 docs citations

74 times ranked 25565 citing authors

#	Article	IF	CITATIONS
1	The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nature Cancer, 2022, 3, 303-317.	13.2	85
2	Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis. Genome Biology, 2022, 23, 100.	8.8	20
3	Hormone seasonality in medical records suggests circannual endocrine circuits. Proceedings of the National Academy of Sciences of the United States of America, 2021, $118,\ldots$	7.1	55
4	Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nature Genetics, 2021, 53, 683-693.	21.4	128
5	Recurrent deletions in clonal hematopoiesis are driven by microhomology-mediated end joining. Nature Communications, 2021, 12, 2455.	12.8	23
6	A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell, 2021, 184, 2973-2987.e18.	28.9	111
7	A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell, 2021, 184, 2825-2842.e22.	28.9	114
8	Dissection of floral transition by single-meristem transcriptomes at high temporal resolution. Nature Plants, 2021, 7, 800-813.	9.3	26
9	Personalized lab test models to quantify disease potentials in healthy individuals. Nature Medicine, 2021, 27, 1582-1591.	30.7	16
10	Single-cell analysis of regions of interest (SCARI) using a photosensitive tag. Nature Chemical Biology, 2021, 17, 1139-1147.	8.0	13
11	DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nature Communications, 2021, 12, 5406.	12.8	29
12	Evolutionary cell type mapping with single-cell genomics. Trends in Genetics, 2021, 37, 919-932.	6.7	43
13	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
14	A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Science Advances, 2020, 6, eaba4137.	10.3	55
15	Dissecting cellular crosstalk by sequencing physically interacting cells. Nature Biotechnology, 2020, 38, 629-637.	17.5	187
16	Single-cell analysis of clonal maintenance of transcriptional and epigenetic states in cancer cells. Nature Genetics, 2020, 52, 709-718.	21.4	66
17	The EXPANDER Integrated Platform for Transcriptome Analysis. Journal of Molecular Biology, 2019, 431, 2398-2406.	4.2	24
18	MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biology, 2019, 20, 206.	8.8	218

#	Article	IF	Citations
19	MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nature Protocols, 2019, 14, 1841-1862.	12.0	200
20	Voices in methods development. Nature Methods, 2019, 16, 945-951.	19.0	5
21	Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma. Cell, 2019, 176, 775-789.e18.	28.9	760
22	Global DNA methylation reflects spatial heterogeneity and molecular evolution of lung adenocarcinomas. International Journal of Cancer, 2019, 144, 1061-1072.	5.1	22
23	Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules. Cell Stem Cell, 2019, 24, 328-341.e9.	11.1	44
24	Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nature Medicine, 2018, 24, 1867-1876.	30.7	179
25	Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq. Cell, 2018, 173, 1520-1534.e20.	28.9	284
26	Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nature Ecology and Evolution, 2018, 2, 1176-1188.	7.8	226
27	Prediction of acute myeloid leukaemia risk in healthy individuals. Nature, 2018, 559, 400-404.	27.8	617
28	Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nature Cell Biology, 2018, 20, 836-846.	10.3	267
29	Scaling single-cell genomics from phenomenology to mechanism. Nature, 2017, 541, 331-338.	27.8	633
30	Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4030-E4039.	7.1	62
31	p53 is essential for DNA methylation homeostasis in naĀ-ve embryonic stem cells, and its loss promotes clonal heterogeneity. Genes and Development, 2017, 31, 959-972.	5.9	48
32	Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell, 2017, 171, 557-572.e24.	28.9	1,060
33	Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature, 2017, 547, 61-67.	27.8	636
34	UMI-4C for quantitative and targeted chromosomal contact profiling. Nature Methods, 2016, 13, 685-691.	19.0	78
35	Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature, 2016, 540, 296-300.	27.8	128
36	Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell, 2016, 167, 1883-1896.e15.	28.9	604

#	Article	IF	Citations
37	The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome. Cell, 2016, 166, 1231-1246.e13.	28.9	465
38	The mutation spectrum in genomic late replication domains shapes mammalian GC content. Nucleic Acids Research, 2016, 44, 4222-4232.	14.5	29
39	Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture. Cell Reports, 2015, 10, 1297-1309.	6.4	648
40	Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nature Protocols, 2015, 10, 1986-2003.	12.0	135
41	Single-cell epigenomics: techniques and emerging applications. Nature Reviews Genetics, 2015, 16, 716-726.	16.3	219
42	Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 2015, 163, 1663-1677.	28.9	875
43	Umi-4C: A Quantitative, Robust and Multiplexed Method to Study the Regulatory Three Dimensional Chromatin Organization - Application for the Mgakaryocytic-Eythroid Lineage. Blood, 2015, 126, 1183-1183.	1.4	0
44	Cooperativity, Specificity, and Evolutionary Stability of Polycomb Targeting in Drosophila. Cell Reports, 2014, 9, 219-233.	6.4	69
45	Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science, 2014, 343, 776-779.	12.6	1,563
46	Intratumor DNA Methylation Heterogeneity Reflects Clonal Evolution in Aggressive Prostate Cancer. Cell Reports, 2014, 8, 798-806.	6.4	219
47	Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature, 2014, 513, 115-119.	27.8	143
48	Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504, 282-286.	27.8	924
49	Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013, 502, 65-70.	27.8	471
50	Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013, 502, 59-64.	27.8	1,347
51	Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization. Current Opinion in Genetics and Development, 2013, 23, 197-203.	3.3	61
52	Drosophila Functional Elements Are Embedded in Structurally Constrained Sequences. PLoS Genetics, 2013, 9, e1003512.	3.5	10
53	Inferring Divergence of Context-Dependent Substitution Rates in Drosophila Genomes with Applications to Comparative Genomics. Molecular Biology and Evolution, 2012, 29, 1769-1780.	8.9	7
54	Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nature Methods, 2012, 9, 969-972.	19.0	357

#	Article	IF	CITATION
55	Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome. Cell, 2012, 148, 458-472.	28.9	1,728
56	Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nature Genetics, 2012, 44, 1207-1214.	21.4	262
57	Primate CpG Islands Are Maintained by Heterogeneous Evolutionary Regimes Involving Minimal Selection. Cell, 2011, 145, 773-786.	28.9	128
58	Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nature Genetics, 2011, 43, 1059-1065.	21.4	582
59	Widespread Compensatory Evolution Conserves DNA-Encoded Nucleosome Organization in Yeast. PLoS Computational Biology, 2010, 6, e1001039.	3.2	36
60	Comparative Analysis of DNA Replication Timing Reveals Conserved Large-Scale Chromosomal Architecture. PLoS Genetics, 2010, 6, e1001011.	3.5	158
61	Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos. PLoS Biology, 2009, 7, e1000013.	5.6	281
62	Sequence context affects the rate of short insertions and deletions in flies and primates. Genome Biology, 2008, 9, R37.	9.6	41
63	Evolution and Selection in Yeast Promoters: Analyzing the Combined Effect of Diverse Transcription Factor Binding Sites. PLoS Computational Biology, 2008, 4, e7.	3.2	19
64	Hyperconserved CpG domains underlie Polycomb-binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5521-5526.	7.1	162
65	Extensive low-affinity transcriptional interactions in the yeast genome. Genome Research, 2006, 16, 962-972.	5 . 5	222