Giulio Piluso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2116166/publications.pdf

Version: 2024-02-01

96 papers

3,462 citations

30 h-index 56 g-index

97 all docs 97
docs citations

97 times ranked 4229 citing authors

#	Article	IF	CITATIONS
1	Therapeutic homology-independent targeted integration in retina and liver. Nature Communications, 2022, 13, 1963.	12.8	14
2	Genotype-Phenotype Correlations in Neurofibromatosis Type 1: Identification of Novel and Recurrent NF1 Gene Variants and Correlations with Neurocognitive Phenotype. Genes, 2022, 13, 1130.	2.4	10
3	Linked-Read Whole Genome Sequencing Solves a Double DMD Gene Rearrangement. Genes, 2021, 12, 133.	2.4	8
4	Nephroplex: a kidney-focused NGS panel highlights the challenges of PKD1 sequencing and identifies a founder BBS4 mutation. Journal of Nephrology, 2021, 34, 1855-1874.	2.0	6
5	Missense mutations in small muscle protein X-linked (SMPX) cause distal myopathy with protein inclusions. Acta Neuropathologica, 2021, 142, 375-393.	7.7	6
6	Solving unsolved rare neurological diseases—a Solve-RD viewpoint. European Journal of Human Genetics, 2021, 29, 1332-1336.	2.8	4
7	A novel MEIS2 mutation explains the complex phenotype in a boy with a typical NF1 microdeletion syndrome. European Journal of Medical Genetics, 2021, 64, 104190.	1.3	3
8	Exome reanalysis and proteomic profiling identified TRIP4 as a novel cause of cerebellar hypoplasia and spinal muscular atrophy (PCH1). European Journal of Human Genetics, 2021, 29, 1348-1353.	2.8	10
9	Poikiloderma With Neutropenia and Mastocytosis: A Case Report and a Review of Dermatological Signs. Frontiers in Medicine, 2021, 8, 680363.	2.6	3
10	Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases. European Journal of Human Genetics, 2021, 29, 1325-1331.	2.8	49
11	Solving patients with rare diseases through programmatic reanalysis of genome-phenome data. European Journal of Human Genetics, 2021, 29, 1337-1347.	2.8	34
12	Clinical variability of neurofibromatosis 1: A modifying role of cooccurring <scp><i>PTPN11</i></scp> variants and atypical brain <scp>MRI</scp> findings. Clinical Genetics, 2021, 100, 563-572.	2.0	6
13	Enhancing cyst-like lesions of the white matter in tuberous sclerosis complex: a novel neuroradiological finding. Neuroradiology, 2021, 63, 971-974.	2.2	5
14	Intermittent macrothrombocytopenia in a novel patient with Takenouchi-Kosaki syndrome and review of literature. European Journal of Medical Genetics, 2021, 64, 104358.	1.3	3
15	Expanding the Neuroradiological Phenotype of 18q Deletion Syndrome. Indian Pediatrics, 2021, 58, 1187-1188.	0.4	0
16	Expanding the Neuroradiological Phenotype of 18q Deletion Syndrome Indian Pediatrics, 2021, 58, 1187-1188.	0.4	0
17	Clinical spectrum of individuals with pathogenic <i> N F1 </i> missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotypeâ€"phenotype study in neurofibromatosis type 1. Human Mutation, 2020, 41, 299-315.	2.5	80
18	NEW GENES IN NEUROMUSCULAR DISEASES. Neuromuscular Disorders, 2020, 30, S46.	0.6	1

#	Article	IF	CITATIONS
19	A novel RAB39B mutation and concurrent de novo NF1 mutation in a boy with neurofibromatosis type 1, intellectual disability, and autism: a case report. BMC Neurology, 2020, 20, 327.	1.8	21
20	The position of nonsense mutations can predict the phenotype severity: A survey on the DMD gene. PLoS ONE, 2020, 15, e0237803.	2.5	25
21	Identification and Characterization of Splicing Defects by Single-Molecule Real-Time Sequencing Technology (PacBio). Journal of Neuromuscular Diseases, 2020, 7, 477-481.	2.6	7
22	Clinical and Genetic Findings in Children with Neurofibromatosis Type 1, Legius Syndrome, and Other Related Neurocutaneous Disorders. Genes, 2019, 10, 580.	2.4	25
23	O.27Ultra-exome: a new tool to solve the unsolved NMD. Neuromuscular Disorders, 2019, 29, S123-S124.	0.6	0
24	Report on a child with neurofibromatosis type 2 and unilateral moyamoya: further evidence of cerebral vasculopathy in NF2. Neurological Sciences, 2019, 40, 1475-1476.	1.9	3
25	Assessment of de novo copy-number variations in Italian patients with schizophrenia: Detection of putative mutations involving regulatory enhancer elements. World Journal of Biological Psychiatry, 2019, 20, 126-136.	2.6	12
26	Targeted gene panel screening is an effective tool to identify undiagnosed late onset Pompe disease. Neuromuscular Disorders, 2018, 28, 586-591.	0.6	24
27	<i>UBE2A</i> deficiency in two siblings: A novel splicing variant inherited from a maternal germline mosaicism. American Journal of Medical Genetics, Part A, 2018, 176, 722-726.	1.2	9
28	Multiple spinal nerve enlargement and <i><scp>SOS1</scp></i> mutation: Further evidence of overlap between neurofibromatosis type 1 and Noonan phenotype. Clinical Genetics, 2018, 93, 138-143.	2.0	17
29	A Novel 12q13.2-q13.3 Microdeletion Syndrome With Combined Features of Diamond Blackfan Anemia, Pierre Robin Sequence and Klippel Feil Deformity. Frontiers in Genetics, 2018, 9, 549.	2.3	7
30	Copy Number Variants Account for a Tiny Fraction of Undiagnosed Myopathic Patients. Genes, 2018, 9, 524.	2.4	7
31	Whole exome sequencing identifies MRVI1 as a susceptibility gene for moyamoya syndrome in neurofibromatosis type 1. PLoS ONE, 2018, 13, e0200446.	2.5	24
32	Seizures in children with neurofibromatosis type 1: is neurofibromatosis type 1 enough?. Italian Journal of Pediatrics, 2018, 44, 41.	2.6	27
33	Moyamoya syndrome in children with neurofibromatosis type 1: Italian–French experience. American Journal of Medical Genetics, Part A, 2017, 173, 1521-1530.	1.2	36
34	A novel SHANK3 interstitial microdeletion in a family with intellectual disability and brain MRI abnormalities resembling Unidentified Bright Objects. European Journal of Paediatric Neurology, 2017, 21, 902-906.	1.6	5
35	Expanding the phenotype of <i><scp>RTTN</scp></i> variations: a new family with primary microcephaly, severe growth failure, brain malformations and dermatitis. Clinical Genetics, 2016, 90, 445-450.	2.0	21
36	Identification of an intragenic deletion in the SGCB gene through a re-evaluation of negative next generation sequencing results. Neuromuscular Disorders, 2016, 26, 367-369.	0.6	12

#	Article	IF	CITATIONS
37	The genetic basis of undiagnosed muscular dystrophies and myopathies. Neurology, 2016, 87, 71-76.	1.1	92
38	Novel findings associated with MTM1 suggest a higher number of female symptomatic carriers. Neuromuscular Disorders, 2016, 26, 292-299.	0.6	25
39	A novel diagnostic method to detect truncated neurofibromin in neurofibromatosis 1. Journal of Neurochemistry, 2015, 135, 1123-1128.	3.9	13
40	Spectrum of muscular dystrophies associated with sarcolemmal-protein genetic defects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 585-593.	3.8	48
41	Arg1809 substitution in neurofibromin: further evidence of a genotype–phenotype correlation in neurofibromatosis type 1. European Journal of Human Genetics, 2015, 23, 1460-1461.	2.8	35
42	Novel mutations in LMNA A/C gene and associated phenotypes. Acta Myologica, 2015, 34, 116-9.	1.5	10
43	Giant thrombosed intracavernous carotid artery aneurysm presenting as Tolosa–Hunt syndrome in a patient harboring a new pathogenic neurofibromatosis type 1 mutation: a case report and review of the literature. Neuropsychiatric Disease and Treatment, 2014, 10, 135.	2.2	10
44	LEOPARD syndrome: clinical dilemmas in differential diagnosis of RASopathies. BMC Medical Genetics, 2014, 15, 44.	2.1	33
45	G.O.7. Neuromuscular Disorders, 2014, 24, 851.	0.6	0
46	Use of a Lower Dosage Liver-Detargeted AAV Vector to Prevent Hamster Muscular Dystrophy. Human Gene Therapy, 2013, 24, 424-430.	2.7	7
47	O.17 Mutation spectrum of limb-girdle muscular dystrophies by New Generation Sequencing approaches. Neuromuscular Disorders, 2013, 23, 849-850.	0.6	0
48	Identification and molecular characterization of a novel 55â€kb deletion recurrent in southern Italy: the Italian ^G γ(^A γÎβ)°â€thalassemia. European Journal of Haematology, 2013, 90, 214-219.	2.2	8
49	Familial trisomy 6p in mother and daughter. American Journal of Medical Genetics, Part A, 2013, 161, 1675-1681.	1.2	3
50	Next-Generation Sequencing Identifies Transportin 3 as the Causative Gene for LGMD1F. PLoS ONE, 2013, 8, e63536.	2.5	69
51	D.O.3 Next generation sequencing applications are ready for genetic diagnosis of muscular dystrophies. Neuromuscular Disorders, 2012, 22, 806.	0.6	0
52	Enhancer Chip: Detecting Human Copy Number Variations in Regulatory Elements. PLoS ONE, 2012, 7, e52264.	2.5	8
53	Identification of a functional estrogenâ€responsive enhancer element in the promoter 2 of <i>PRDM2</i> gene in breast cancer cell lines. Journal of Cellular Physiology, 2012, 227, 964-975.	4.1	22
54	Improvement of survival in Duchenne Muscular Dystrophy: retrospective analysis of 835 patients. Acta Myologica, 2012, 31, 121-5.	1.5	221

#	Article	IF	Citations
55	Next generation sequencing (NGS) strategies for the genetic testing of myopathies. Acta Myologica, 2012, 31, 196-200.	1.5	27
56	P2.27 Full exome resequencing by next generation sequencing (NGS) combined with chip analysis for the genetic testing of unclassified myopathic patients. Neuromuscular Disorders, 2011, 21, 668.	0.6	0
57	Worsening of Cardiomyopathy Using Deflazacort in an Animal Model Rescued by Gene Therapy. PLoS ONE, 2011, 6, e24729.	2.5	19
58	Limb girdle muscular dystrophies. Current Opinion in Neurology, 2011, 24, 429-436.	3.6	136
59	Novel missense mutations and unexpected multiple changes of RYR1 gene in 75 malignant hyperthermia families. Clinical Genetics, 2011, 79, 438-447.	2.0	34
60	Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. European Journal of Human Genetics, 2011, 19, 974-980.	2.8	67
61	Motor Chip: A Comparative Genomic Hybridization Microarray for Copy-Number Mutations in 245 Neuromuscular Disorders. Clinical Chemistry, 2011, 57, 1584-1596.	3.2	48
62	Combined deficiency of alpha and epsilon sarcoglycan disrupts the cardiac dystrophin complex. Human Molecular Genetics, 2011, 20, 4644-4654.	2.9	35
63	Reliable resequencing of the human dystrophin locus by universal long polymerase chain reaction and massive pyrosequencing. Analytical Biochemistry, 2010, 406, 176-184.	2.4	15
64	P3.14 New AAVs for the muscle gene therapy in sarcoglycan deficient animals. Neuromuscular Disorders, 2010, 20, 645.	0.6	0
65	An Italian case of hereditary myopathy with early respiratory failure (HMERF) not associated with the titin kinase domain R279W mutation. Neuromuscular Disorders, 2010, 20, 730-734.	0.6	15
66	One Hundred Twenty-One Dystrophin Point Mutations Detected from Stored DNA Samples by Combinatorial Denaturing High-Performance Liquid Chromatography. Journal of Molecular Diagnostics, 2010, 12, 65-73.	2.8	17
67	Mendelian bases of myopathies, cardiomyopathies, and neuromyopathies. Acta Myologica, 2010, 29, 1-20.	1.5	7
68	A Missense Mutation in CASK Causes FG Syndrome in an Italian Family. American Journal of Human Genetics, 2009, 84, 162-177.	6.2	82
69	Lack of replication of genetic associations with human longevity. Biogerontology, 2008, 9, 85-92.	3.9	69
70	Mutations that impair interaction properties of TRIM32 associated with limb-girdle muscular dystrophy 2H. Human Mutation, 2008, 29, 240-247.	2.5	92
71	G.P.10.01 Dysferlinopathies in Southern Italy. Neuromuscular Disorders, 2008, 18, 790.	0.6	0
72	G.P.10.11 T-CAP, the gene responsible for LGMD2G, may interact with dysferlin. Neuromuscular Disorders, 2008, 18, 793.	0.6	0

#	Article	IF	Citations
7 3	G.P.14.06 LGMD2H patients of non Hutterite origin with mutations in TRIM32 gene. Neuromuscular Disorders, 2008, 18, 817.	0.6	0
74	Log-PCR: A New Tool for Immediate and Cost-Effective Diagnosis of up to 85% of Dystrophin Gene Mutations. Clinical Chemistry, 2008, 54, 973-981.	3.2	27
7 5	Candidate-gene testing for orphan limb-girdle muscular dystrophies. Acta Myologica, 2008, 27, 90-7.	1.5	6
76	G.P.8.06 Limb-girdle muscular dystrophies: DNA test following protein test or not?. Neuromuscular Disorders, 2007, 17, 811-812.	0.6	0
77	G.P.4.03 Mutations in the lamin A/C gene: An emergent cause of fatal arrhythmias in congenital muscular dystrophies. Neuromuscular Disorders, 2006, 16, 675-676.	0.6	O
78	P.P.6 02 Cardiac and respiratory involvement in autosomal recessive limb-girdle muscular dystrophies. Neuromuscular Disorders, 2006, 16, 694.	0.6	0
79	T.O. 6 Systemic delta-sarcoglycan gene transfer into cardiomyopathic BIO14.6 hamsters by AAV. Neuromuscular Disorders, 2006, 16, 724.	0.6	0
80	Extensive scanning of the calpain-3 gene broadens the spectrum of LGMD2A phenotypes. Journal of Medical Genetics, 2005, 42, 686-693.	3.2	92
81	Molecular and muscle pathology in a series of caveolinopathy patients. Human Mutation, 2005, 25, 82-89.	2.5	64
82	Prevalence of the 550delA mutation in calpainopathy (LGMD 2A) in Croatia. American Journal of Medical Genetics Part A, 2004, 125A, 152-156.	2.4	31
83	Molecular diagnosis in LGMD2A: Mutation analysis or protein testing?. Human Mutation, 2004, 24, 52-62.	2.5	109
84	Genetic heterogeneity of FG syndrome: a fourth locus (FGS4) maps to Xp11.4-p11.3 in an Italian family. Human Genetics, 2003, 112, 124-130.	3.8	30
85	Scanning for Mutations of the Ryanodine Receptor (RYR1) Gene by Denaturing HPLC: Detection of Three Novel Malignant Hyperthermia Alleles. Clinical Chemistry, 2003, 49, 761-768.	3.2	37
86	\hat{l}^31 - and \hat{l}^32 -Syntrophins, Two Novel Dystrophin-binding Proteins Localized in Neuronal Cells. Journal of Biological Chemistry, 2000, 275, 15851-15860.	3.4	117
87	The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3130-3135.	7.1	56
88	The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3130-3135.	7.1	36
89	Identification of a DNA Binding Protein Cooperating with Estrogen Receptor as RIZ (Retinoblastoma) Tj ETQq1 983-989.	1 0.784314 2.1	rgBT /Over
90	Identification and characterization of a novel member of the dystrobrevin gene family. FEBS Letters, 1998, 425, 7-13.	2.8	24

Giulio Piluso

#	Article	IF	CITATION
91	Interaction of Vault Particles with Estrogen Receptor in the MCF-7 Breast Cancer Cell. Journal of Cell Biology, 1998, 141, 1301-1310.	5.2	93
92	Identification of the Syrian hamster cardiomyopathy gene. Human Molecular Genetics, 1997, 6, 601-607.	2.9	253
93	The fourth component of the sarcoglycan complex. FEBS Letters, 1997, 403, 143-148.	2.8	26
94	Autosomal recessive limbgirdle muscular dystrophy, LGMD2F, is caused by a mutation in the δ–sarcoglycan gene. Nature Genetics, 1996, 14, 195-198.	21.4	417
95	Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Human Molecular Genetics, 1996, 5, 1179-1186.	2.9	173
96	SSCP detection of novel mutations in patients with Emery-Dreifuss muscular dystrophy: definition of a small C-terminal region required for emerin function. Human Molecular Genetics, 1995, 4, 2003-2004.	2.9	48