
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2116131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970's Egypt. Virology Journal, 2022, 19, 12.	3.4	17
2	Deformed wing virus prevalence and load in honeybees in South Africa. Archives of Virology, 2021, 166, 237-241.	2.1	12
3	Spatial distribution of recapping behaviour indicates clustering around Varroa infested cells. Journal of Apicultural Research, 2021, 60, 707-716.	1.5	4
4	Elevated recapping behaviour and reduced Varroa destructor reproduction in natural Varroa resistant Apis mellifera honey bees from the UK. Apidologie, 2021, 52, 647-657.	2.0	12
5	Ten Years of Deformed Wing Virus (DWV) in Hawaiian Honey Bees (Apis mellifera), the Dominant DWV-A Variant Is Potentially Being Replaced by Variants with a DWV-B Coding Sequence. Viruses, 2021, 13, 969.	3.3	13
6	Parallel evolution of <i>Varroa</i> resistance in honey bees: a common mechanism across continents?. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211375.	2.6	17
7	Vulnerability of island insect pollinator communities to pathogens. Journal of Invertebrate Pathology, 2021, 186, 107670.	3.2	2
8	Varroa destructor reproduction and cell re-capping in mite-resistant Apis mellifera populations. Apidologie, 2020, 51, 369-381.	2.0	37
9	RNAseq of Deformed Wing Virus and Other Honey Bee-Associated Viruses in Eight Insect Taxa with or without Varroa Infestation. Viruses, 2020, 12, 1229.	3.3	19
10	Detection and Replication of Moku Virus in Honey Bees and Social Wasps. Viruses, 2020, 12, 607.	3.3	20
11	Complete mitochondrial DNA sequence of the parasitic honey bee mite <i>Varroa destructor</i> (Mesostigmata: Varroidae). Mitochondrial DNA Part B: Resources, 2020, 5, 635-636.	0.4	3
12	Complete mitochondrial DNA sequence of the small hive beetle Aethina tumida (Insecta: Coleoptera) from Hawaii. Mitochondrial DNA Part B: Resources, 2019, 4, 1522-1523.	0.4	3
13	Phenotypic Plasticity of Nest-Mate Recognition Cues in Formica exsecta Ants. Journal of Chemical Ecology, 2019, 45, 735-740.	1.8	4
14	Deformed Wing Virus in Honeybees and Other Insects. Annual Review of Virology, 2019, 6, 49-69.	6.7	151
15	RNAseq Analysis Reveals Virus Diversity within Hawaiian Apiary Insect Communities. Viruses, 2019, 11, 397.	3.3	28
16	DWV-A Lethal to Honey Bees (Apis mellifera): A Colony Level Survey of DWV Variants (A, B, and C) in England, Wales, and 32 States across the US. Viruses, 2019, 11, 426.	3.3	62
17	Asian Honey Bee <i>Apis cerana</i> Foraging on Mushrooms. Bee World, 2019, 96, 10-11.	0.8	2
18	Occurrence of deformed wing virus variants in the stingless bee Melipona subnitida and honey bee Apis mellifera populations in Brazil. Journal of General Virology, 2019, 100, 289-294.	2.9	37

#	Article	IF	CITATIONS
19	Evidence of Varroa-mediated deformed wing virus spillover in Hawaii. Journal of Invertebrate Pathology, 2018, 151, 126-130.	3.2	33
20	A vast 4,000-year-old spatial pattern of termite mounds. Current Biology, 2018, 28, R1292-R1293.	3.9	45
21	Is the Salivary Gland Associated with Honey Bee Recognition Compounds in Worker Honey Bees (Apis) Tj ETQq1	1 0.78433 1.8	14 rgBT /Over
22	The complete mitochondrial genome of a Buckfast bee, Apis mellifera (Insecta: Hymenoptera: Apidae) in Northern Ireland. Mitochondrial DNA Part B: Resources, 2018, 3, 338-339.	0.4	6
23	Life history and chemical ecology of the Warrior wasp Synoeca septentrionalis (Hymenoptera:) Tj ETQq1 1 0.784	314 _{.7} gBT 2.5	/Oyerlock 10
24	Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162149.	2.6	100
25	Are Isomeric Alkenes Used in Species Recognition among Neo-Tropical Stingless Bees (Melipona Spp). Journal of Chemical Ecology, 2017, 43, 1066-1072.	1.8	10
26	Complete mitochondrial DNA sequence of the tropical hornet Vespa affinis (Insecta, Hymenoptera). Mitochondrial DNA Part B: Resources, 2017, 2, 776-777.	0.4	5
27	A Comparison of Deformed Wing Virus in Deformed and Asymptomatic Honey Bees. Insects, 2017, 8, 28.	2.2	45
28	Novel RNA Virus Genome Discovered in Ghost Ants (Tapinoma melanocephalum) from Hawaii. Genome Announcements, 2017, 5, .	0.8	4
29	Use of Mass-Participation Outdoor Events to Assess Human Exposure to Tickborne Pathogens. Emerging Infectious Diseases, 2017, 23, 463-467.	4.3	19
30	ABC Assay: Method Development and Application to Quantify the Role of Three DWV Master Variants in Overwinter Colony Losses of European Honey Bees. Viruses, 2017, 9, 314.	3.3	62
31	Species-Specific Cuticular Hydrocarbon Stability within European Myrmica Ants. Journal of Chemical Ecology, 2016, 42, 1052-1062.	1.8	33
32	The occurrence of ecto-parasitic Leptus sp. mites on Africanized honey bees. Journal of Apicultural Research, 2016, 55, 243-246.	1.5	3
33	Moku virus; a new Iflavirus found in wasps, honey bees and Varroa. Scientific Reports, 2016, 6, 34983.	3.3	55
34	Diversity in a honey bee pathogen: first report of a third master variant of the Deformed Wing Virus quasispecies. ISME Journal, 2016, 10, 1264-1273.	9.8	147
35	Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies. ISME Journal, 2016, 10, 1182-1191.	9.8	88
36	Using Errors by Guard Honeybees (<i>Apis mellifera</i>) to Gain New Insights into Nestmate Recognition Signals. Chemical Senses, 2015, 40, 649-653.	2.0	10

#	Article	IF	CITATIONS
37	Evolution of Cuticular Hydrocarbons in the Hymenoptera: a Meta-Analysis. Journal of Chemical Ecology, 2015, 41, 871-883.	1.8	90
38	Evidence for Passive Chemical Camouflage in the Parasitic Mite Varroa destructor. Journal of Chemical Ecology, 2015, 41, 178-186.	1.8	26
39	Evidence for colony-specific differences in chemical mimicry in the parasitic mite Varroa destructor. Chemoecology, 2015, 25, 215-222.	1.1	16
40	Chemical deception among ant social parasites. Environmental Epigenetics, 2014, 60, 62-75.	1.8	33
41	Nest-mate recognition cues are not used during or influenced by mating in the antFormica exsecta. Ethology Ecology and Evolution, 2014, 26, 40-48.	1.4	3
42	Is the bee louse Braula coeca (Diptera) using chemical camouflage to survive within honeybee colonies?. Chemoecology, 2014, 24, 165-169.	1.1	13
43	Recognition of nestmate eggs in the ant Formica fusca is based on queen derived cues. Environmental Epigenetics, 2014, 60, 131-136.	1.8	11
44	Do the honeybee pathogens <i><scp>N</scp>osema ceranae</i> and deformed wing virus act synergistically?. Environmental Microbiology Reports, 2013, 5, 506-510.	2.4	39
45	Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography–mass spectrometry. Journal of Chromatography A, 2013, 1297, 236-240.	3.7	27
46	Sources of Variation in Cuticular Hydrocarbons in the Ant Formica exsecta. Journal of Chemical Ecology, 2013, 39, 1415-1423.	1.8	23
47	The role of deformed wing virus in the initial collapse of varroa infested honey bee colonies in the UK. Journal of Apicultural Research, 2013, 52, 251-258.	1.5	29
48	Standard methods for varroa research. Journal of Apicultural Research, 2013, 52, 1-54.	1.5	264
49	Transcriptome Characterisation of the Ant Formica exsecta with New Insights into the Evolution of Desaturase Genes in Social Hymenoptera. PLoS ONE, 2013, 8, e68200.	2.5	14
50	Deformed wing virus. Virulence, 2012, 3, 589-591.	4.4	58
51	Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects. Physiological Entomology, 2012, 37, 25-32.	1.5	106
52	Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. Journal of Asia-Pacific Entomology, 2012, 15, 473-477.	0.9	109
53	Weak patriline effects are present in the cuticular hydrocarbon profiles of isolated <i><scp>F</scp>ormica exsecta</i> ants but they disappear in the colony environment. Ecology and Evolution, 2012, 2, 2333-2346.	1.9	12
54	Global Honey Bee Viral Landscape Altered by a Parasitic Mite. Science, 2012, 336, 1304-1306.	12.6	548

4

#	Article	IF	CITATIONS
55	Conspecific Ant Aggression is Correlated with Chemical Distance, but not with Genetic or Spatial Distance. Behavior Genetics, 2012, 42, 323-331.	2.1	38
56	Distribution, spread and impact of the invasive hornet Vespa velutina in South Korea. Entomological Research, 2011, 41, 276-276.	1.1	6
57	Task Group Differences in Cuticular Lipids in the Honey Bee Apis mellifera. Journal of Chemical Ecology, 2011, 37, 205-212.	1.8	72
58	Is parasite pressure a driver of chemical cue diversity in ants?. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 496-503.	2.6	55
59	Genetic diversity, colony chemical phenotype, and nest mate recognition in the ant Formica fusca. Behavioral Ecology, 2011, 22, 710-716.	2.2	39
60	Male production by non-natal workers in the bumblebee, Bombus deuteronymus (Hymenoptera: Apidae). Journal of Ethology, 2010, 28, 61-66.	0.8	24
61	Host Specific Social Parasites (Psithyrus) Indicate Chemical Recognition System in Bumblebees. Journal of Chemical Ecology, 2010, 36, 855-863.	1.8	77
62	Sex Allocation: Size Matters for Red Spider Mites. Current Biology, 2010, 20, R1080-R1081.	3.9	2
63	The epidemiology of cloudy wing virus infections in honey bee colonies in the UK. Journal of Apicultural Research, 2010, 49, 66-71.	1.5	20
64	Sexual selection in honey bees: colony variation and the importance of size in male mating success. Behavioral Ecology, 2010, 21, 520-525.	2.2	47
65	Prevalence and persistence of deformed wing virus (DWV) in untreated or acaricide-treated Varroa destructor infested honey bee (Apis mellifera) colonies. Journal of Apicultural Research, 2010, 49, 72-79.	1.5	52
66	Honey bee colony collapse and changes in viral prevalence associated with <i>Varroa destructor</i> . Journal of Apicultural Research, 2010, 49, 93-94.	1.5	109
67	Queen condition, mating frequency, queen loss, and levels of worker reproduction in the hornets <i>Vespa affinis </i> and <i>V. simillima</i> . Ecological Entomology, 2009, 34, 43-49.	2.2	9
68	Population changes of <i>Tropilaelaps clareae</i> mites in <i>Apis mellifera</i> colonies in Pakistan. Journal of Apicultural Research, 2009, 48, 46-49.	1.5	8
69	Deformed Wing Virus Implicated in Overwintering Honeybee Colony Losses. Applied and Environmental Microbiology, 2009, 75, 7212-7220.	3.1	247
70	How Reliable is the Analysis of Complex Cuticular Hydrocarbon Profiles by Multivariate Statistical Methods?. Journal of Chemical Ecology, 2009, 35, 375-382.	1.8	56
71	Nestmate and Task Cues are Influenced and Encoded Differently within Ant Cuticular Hydrocarbon Profiles. Journal of Chemical Ecology, 2009, 35, 368-374.	1.8	81
72	A Review of Ant Cuticular Hydrocarbons. Journal of Chemical Ecology, 2009, 35, 1151-1161.	1.8	229

STEPHEN JOHN MARTIN

#	Article	IF	CITATIONS
73	Long-term stability of hornet cuticular hydrocarbons facilitates chemotaxonomy using museum specimens. Biological Journal of the Linnean Society, 2009, 96, 732-737.	1.6	28
74	Colony-specific Hydrocarbons Identify Nest Mates in Two Species of Formica Ant. Journal of Chemical Ecology, 2008, 34, 1072-1080.	1.8	79
75	Is the social parasite Vespa dybowskii using chemical transparency to get her eggs accepted?. Journal of Insect Physiology, 2008, 54, 700-707.	2.0	42
76	Chemical basis of nest-mate discrimination in the ant <i>Formica exsecta</i> . Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1271-1278.	2.6	149
77	Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2717-2722.	2.6	37
78	Mating structure and male production in <i>Vespa analis</i> and <i>Vespa simillima</i> (Hymenoptera:) Tj ETQ	9000 rg	BT /Overlock 1
79	Setosa membrane structure and occurrence of eicosenol in honeybees (Apissp.). Apidologie, 2007, 38, 104-109.	2.0	3
80	Higher removal rate of eggs laid by anarchistic queens—a cost of anarchy?. Behavioral Ecology and Sociobiology, 2007, 61, 1847-1853.	1.4	1
81	Prior experience with eggs laid by non-nestmate queens induces egg acceptance errors in ant workers. Behavioral Ecology and Sociobiology, 2007, 62, 223-228.	1.4	20
82	Early collapse of Vespa simillima (Hymenoptera, Vespidae) colonies in central Japan. Entomological Science, 2006, 9, 373-376.	0.6	1
83	Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis. Conservation Genetics, 2006, 6, 527-537.	1.5	56
84	Longevity and detection of persistent foraging trails in Pharaoh's ants, Monomorium pharaonis (L.). Animal Behaviour, 2006, 71, 351-359.	1.9	68
85	Mortality of mite offspring: a major component ofVarroa destructorresistance in a population of Africanized bees. Apidologie, 2006, 37, 67-74.	2.0	37
86	Role of esters in egg removal behaviour in honeybee (Apis mellifera) colonies. Behavioral Ecology and Sociobiology, 2005, 59, 24-29.	1.4	6
87	Morphology of the Dufour gland within the honey bee sting gland complex. Apidologie, 2005, 36, 543-546.	2.0	19
88	Learning and Discrimination of Individual Cuticular Hydrocarbons by Honeybees (Apis mellifera). Chemical Senses, 2005, 30, 327-335.	2.0	107
89	Absence of nepotism toward imprisoned young queens during swarming in the honey bee. Behavioral Ecology, 2005, 16, 403-409.	2.2	18
90	Role of hydrocarbons in egg recognition in the honeybee. Physiological Entomology, 2004, 29, 395-399.	1.5	14

#	Article	IF	CITATIONS
91	Egg marking pheromones of anarchistic worker honeybees (Apis mellifera). Behavioral Ecology, 2004, 15, 839-844.	2.2	27
92	Acaricide (pyrethroid) resistance in <i>Varroa destructor</i> . Bee World, 2004, 85, 67-69.	0.8	58
93	Africanized honeybees have unique tolerance to Varroa mites. Trends in Parasitology, 2004, 20, 112-114.	3.3	86
94	Conservation of Bio synthetic pheromone pathways in honeybees Apis. Die Naturwissenschaften, 2004, 91, 232-236.	1.6	14
95	Mating structure and male production in the giant hornet Vespa mandarinia (Hymenoptera: Vespidae). Applied Entomology and Zoology, 2004, 39, 343-349.	1.2	18
96	Comparing data on the reproduction of Varroa destructor. Genetics and Molecular Research, 2003, 2, 1-6.	0.2	115
97	Reproduction of Varroa destructor in South African honey bees: does cell space influence Varroa male survivorship?. Apidologie, 2002, 33, 51-61.	2.0	43
98	Reassessing the role of the honeybee (Apis mellifera) Dufour's gland in egg marking. Die Naturwissenschaften, 2002, 89, 528-532.	1.6	37
99	Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing. Nature, 2002, 415, 163-165.	27.8	126
100	Reproduction of Varroa destructor in worker brood of Africanized honey bees (Apis mellifera). Experimental and Applied Acarology, 2002, 27, 79-88.	1.6	27
101	Effect of acaricide resistance on reproductive ability of the honey bee mite Varroa destructor. Experimental and Applied Acarology, 2002, 27, 195-207.	1.6	14
102	Usurpation of African Apis mellifera scutellata colonies by parasitic Apis mellifera capensis workers. Apidologie, 2002, 33, 215-232.	2.0	41
103	The role ofVarroaand viral pathogens in the collapse of honeybee colonies: a modelling approach. Journal of Applied Ecology, 2001, 38, 1082-1093.	4.0	282
104	Varroa destructor reproduction during the winter in Apis mellifera colonies in UK. Experimental and Applied Acarology, 2001, 25, 321-325.	1.6	21
105	Title is missing!. Experimental and Applied Acarology, 1999, 23, 659-667.	1.6	51
106	A population model for the ectoparasitic mite Varroa jacobsoni in honey bee (Apis mellifera) colonies. Ecological Modelling, 1998, 109, 267-281.	2.5	141
107	A scientific note on Varroa jacobsoni Oudemans and the collapse of Apis mellifera L. colonies in the United Kingdom. Apidologie, 1998, 29, 369-370.	2.0	59
108	Non-reproduction in the honeybee mite Varroa jacobsoni. Experimental and Applied Acarology, 1997, 21, 539-549.	1.6	54

STEPHEN JOHN MARTIN

#	Article	IF	CITATIONS
109	Effect of host brood type on the number of offspring laid by the honeybee parasite Varroa jacobsoni. Experimental and Applied Acarology, 1996, 20, 387-390.	1.6	9
110	Protection, promotion and cooperation in the European semiconductor industry. Review of Industrial Organization, 1996, 11, 721-735.	0.7	16
111	Nest thermoregulation in Vespa simillima, V.tropica and V.analis. Ecological Entomology, 1990, 15, 301-310.	2.2	18
112	Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biological Journal of the Linnean Society, 0, 95, 131-140.	1.6	119
113	Colony and species recognition among the Formica ants. , 0, , 106-122.		1
114	Standard methods for varroa research. , 0, .		1