Louise J Slater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2115415/publications.pdf

Version: 2024-02-01

218677 243625 2,144 52 26 44 citations h-index g-index papers 84 84 84 2245 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Relative Importance of Different Floodâ€Generating Mechanisms Across Europe. Water Resources Research, 2019, 55, 4582-4593.	4.2	152
2	Hydrologic versus geomorphic drivers of trends in flood hazard. Geophysical Research Letters, 2015, 42, 370-376.	4.0	134
3	Recent trends in U.S. flood risk. Geophysical Research Letters, 2016, 43, 12,428.	4.0	132
4	Remotely sensed rivers in the Anthropocene: state of the art and prospects. Earth Surface Processes and Landforms, 2020, 45, 157-188.	2.5	128
5	Objective extraction of channel heads from high-resolution topographic data. Water Resources Research, 2014, 50, 4283-4304.	4.2	123
6	Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management. Hydrology and Earth System Sciences, 2021, 25, 3897-3935.	4.9	109
7	Census and typology of braided rivers in the French Alps. Aquatic Sciences, 2009, 71, 371-388.	1.5	101
8	Challenges in modeling and predicting floods and droughts: A review. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1520.	6.5	96
9	Imprint of climate and climate change in alluvial riverbeds: Continental United States, 1950-2011. Geology, 2013, 41, 595-598.	4.4	71
10	Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrology and Earth System Sciences, 2021, 25, 5517-5534.	4.9	69
11	Global Changes in 20‥ear, 50‥ear, and 100‥ear River Floods. Geophysical Research Letters, 2021, 48, e2020GL091824.	4.0	66
12	Intensity-duration-frequency curves at the global scale. Environmental Research Letters, 2019, 14, 084045.	5.2	57
13	Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds. Earth Surface Dynamics, 2017, 5, 369-385.	2.4	53
14	Using R in hydrology: a review of recent developments and future directions. Hydrology and Earth System Sciences, 2019, 23, 2939-2963.	4.9	50
15	Evaluation of the skill of North-American Multi-Model Ensemble (NMME) Global Climate Models in predicting average and extreme precipitation and temperature over the continental USA. Climate Dynamics, 2019, 53, 7381-7396.	3.8	50
16	Global Increases in Compound Floodâ€Hot Extreme Hazards Under Climate Warming. Geophysical Research Letters, 2022, 49, .	4.0	48
17	Enhancing the Predictability of Seasonal Streamflow With a Statisticalâ€Dynamical Approach. Geophysical Research Letters, 2018, 45, 6504-6513.	4.0	47
18	The  dirty dozen' of freshwater science: detecting then reconciling hydrological data biases and errors. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1209.	6.5	45

#	Article	IF	Citations
19	Evaluating the Drivers of Seasonal Streamflow in the U.S. Midwest. Water (Switzerland), 2017, 9, 695.	2.7	40
20	Using UNSEEN trends to detect decadal changes in 100 -year precipitation extremes. Npj Climate and Atmospheric Science, $2020, 3, .$	6.8	40
21	To what extent have changes in channel capacity contributed to flood hazard trends in England and Wales?. Earth Surface Processes and Landforms, 2016, 41, 1115-1128.	2.5	38
22	On the statistical attribution of the frequency of flood events across the U.S. Midwest. Advances in Water Resources, 2019, 127, 225-236.	3.8	38
23	River channel conveyance capacity adjusts to modes of climate variability. Scientific Reports, 2019, 9, 12619.	3.3	37
24	Hydrological concept formation inside long short-term memoryÂ(LSTM) networks. Hydrology and Earth System Sciences, 2022, 26, 3079-3101.	4.9	34
25	Weighting of NMME temperature and precipitation forecasts across Europe. Journal of Hydrology, 2017, 552, 646-659.	5.4	30
26	Green infrastructure: The future of urban flood risk management?. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1560.	6.5	30
27	A dynamical statistical framework for seasonal streamflow forecasting in an agricultural watershed. Climate Dynamics, 2019, 53, 7429-7445.	3.8	26
28	Continuity of terrestrial water storage variability and trends across mainland China monitored by the GRACE and GRACE-Follow on satellites. Journal of Hydrology, 2021, 599, 126308.	5.4	25
29	On the impact of gaps on trend detection in extreme streamflow time series. International Journal of Climatology, 2017, 37, 3976-3983.	3.5	23
30	Asymmetrical Shift Toward Less Light and More Heavy Precipitation in an Urban Agglomeration of East China: Intensification by Urbanization. Geophysical Research Letters, 2022, 49, .	4.0	22
31	Improved ENSO Forecasting Using Bayesian Updating and the North American Multimodel Ensemble (NMME). Journal of Climate, 2017, 30, 9007-9025.	3.2	20
32	Threshold constraints on the size, shape and stability of alluvial rivers. Nature Reviews Earth & Environment, 2022, 3, 406-419.	29.7	20
33	Extreme floods in Europe: going beyond observations using reforecast ensemble pooling. Hydrology and Earth System Sciences, 2022, 26, 469-482.	4.9	16
34	Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia. Nature Communications, 2022, 13 , .	12.8	15
35	Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios. Communications Earth & Environment, 2022, 3, .	6.8	13
36	Interpreting extreme climate impacts from large ensemble simulations—are they unseen or unrealistic?. Environmental Research Letters, 2022, 17, 044052.	5. 2	13

#	Article	IF	CITATIONS
37	On the decadal predictability of the frequency of flood events across the U.S. Midwest. International Journal of Climatology, 2019, 39, 1796-1804.	3.5	12
38	Measuring the changing pulse of rivers. Science, 2017, 357, 552-552.	12.6	11
39	An open workflow to gain insights about lowâ€likelihood highâ€impact weather events from initialized predictions. Meteorological Applications, 2022, 29, .	2.1	9
40	Examination of Changes in Annual Maximum Gauge Height in the Continental United States Using Quantile Regression. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	1.9	8
41	Demystifying academics to enhance university–business collaborations in environmental science. Geoscience Communication, 2019, 2, 1-23.	0.9	8
42	Greenhouse Gas Emissions Drive Global Dryland Expansion but Not Spatial Patterns of Change in Aridification. Journal of Climate, 2022, 35, 2901-2917.	3.2	8
43	Statistical Attribution of the Influence of Urban and Tree Cover Change on Streamflow: A Comparison of Large Sample Statistical Approaches. Water Resources Research, 2022, 58, .	4.2	7
44	Seasonal predictability of high sea level frequency using ENSO patterns along the U.S. West Coast. Advances in Water Resources, 2019, 131, 103377.	3.8	6
45	HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists. Hydrology and Earth System Sciences, 2018, 22, 3589-3599.	4.9	5
46	Using Fractals to Describe Ecologically Relevant Patterns in Distributions of Large Rocks in Streams. Water Resources Research, 2021, 57, e2021WR029796.	4.2	5
47	Hydrological controls on oviposition habitat are associated with eggâ€laying phenology of some caddisflies. Freshwater Biology, 2021, 66, 1311-1327.	2.4	3
48	<scp>SEAS5</scp> skilfully predicts late w <scp>etâ€season</scp> precipitation in Central American Dry Corridor excelling in Costa Rica and Nicaragua. International Journal of Climatology, 2022, 42, 4953-4971.	3.5	3
49	Atmospheric rivers and associated extreme rainfall over Morocco. International Journal of Climatology, 2022, 42, 7766-7778.	3.5	3
50	Detection and Attribution of Human Influence on the Global Diurnal Temperature Range Decline. Geophysical Research Letters, 2022, 49, .	4.0	3
51	Substantial Increase in Heavy Precipitation Events Preceded by Moist Heatwaves Over China During 1961–2019. Frontiers in Environmental Science, 0, 10, .	3.3	3
52	Decreasing flood hazard evaluated in Turkey using nonstationary models. River Research and Applications, 0, , .	1.7	1