
Massimiliano Di Ventra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2115266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Second Harmonic Generation Exploiting Ultra-Stable Resistive Switching Devices for Secure Hardware Systems. IEEE Nanotechnology Magazine, 2022, 21, 71-80.	2.0	5
2	Non-equilibrium criticality and efficient exploration of glassy landscapes with memory dynamics. Physica A: Statistical Mechanics and Its Applications, 2022, 591, 126727.	2.6	2
3	Polariton-Based Quantum Memristors. Physical Review Applied, 2022, 17, .	3.8	3
4	Antiferromagnetic Parametric Resonance Driven by Voltage-Controlled Magnetic Anisotropy. Physical Review Applied, 2022, 17, .	3.8	6
5	Custodial Chiral Symmetry in a Su-Schrieffer-Heeger Electrical Circuit with Memory. Physical Review Letters, 2022, 128, 097701.	7.8	13
6	An experimental demonstration of the memristor test. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115290.	2.7	4
7	The promise of spintronics for unconventional computing. Journal of Magnetism and Magnetic Materials, 2021, 521, 167506.	2.3	66
8	Effect of quantum resonances on local temperature in nonequilibrium open systems. Physical Review B, 2021, 103, .	3.2	5
9	The Fourier signatures of memristive hysteresis. Journal Physics D: Applied Physics, 2021, 54, 245302.	2.8	3
10	Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations. Nano Letters, 2021, 21, 2658-2665.	9.1	12
11	Directed percolation and numerical stability of simulations of digital memcomputing machines. Chaos, 2021, 31, 063127.	2.5	1
12	Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs. Frontiers in Neuroscience, 2021, 15, 660894.	2.8	17
13	Nanomagnetic Self-Organizing Logic Gates. Physical Review Applied, 2021, 16, .	3.8	1
14	Mode-assisted joint training of deep Boltzmann machines. Scientific Reports, 2021, 11, 19000.	3.3	1
15	On the validity of memristor modeling in the neural network literature. Neural Networks, 2020, 121, 52-56.	5.9	31
16	Stress-Testing Memcomputing on Hard Combinatorial Optimization Problems. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 2222-2226.	11.3	5
17	Mode-assisted unsupervised learning of restricted Boltzmann machines. Communications Physics, 2020, 3, .	5.3	12
18	Efficient solution of Boolean satisfiability problems with digital memcomputing. Scientific Reports, 2020, 10, 19741.	3.3	8

#	Article	IF	CITATIONS
19	An Experimental Proof that Resistance‣witching Memory Cells are not Memristors. Advanced Electronic Materials, 2020, 6, 2000010.	5.1	20
20	Application of Floquet theory to dynamical systems with memory. Chaos, 2020, 30, 123102.	2.5	3
21	Critical branching processes in digital memcomputing machines. Europhysics Letters, 2019, 127, 30005.	2.0	5
22	Digital memcomputing: From logic to dynamics to topology. Annals of Physics, 2019, 409, 167935.	2.8	8
23	Local temperatures out of equilibrium. Physics Reports, 2019, 830, 1-66.	25.6	22
24	Chaos as a symmetry-breaking phenomenon. Modern Physics Letters B, 2019, 33, 1950287.	1.9	3
25	Taming a nonconvex landscape with dynamical long-range order: Memcomputing Ising benchmarks. Physical Review E, 2019, 100, 053311.	2.1	13
26	On the Universality of Memcomputing Machines. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 1610-1620.	11.3	3
27	Accelerating deep learning with memcomputing. Neural Networks, 2019, 110, 1-7.	5.9	23
28	Josephson Thermal Memory. Physical Review Applied, 2018, 9, .	3.8	40
29	Instantons in Self-Organizing Logic Gates. Physical Review Applied, 2018, 9, .	3.8	13
30	Phase-dependent noise in Josephson junctions. EPJ Applied Physics, 2018, 81, 10601.	0.7	1
31	Memcomputing Numerical Inversion With Self-Organizing Logic Gates. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 2645-2650.	11.3	5
32	Surface effects on ionic Coulomb blockade in nanometer-size pores. Nanotechnology, 2018, 29, 025703.	2.6	6
33	Evidence of Exponential Speed-Up in the Solution of Hard Optimization Problems. Complexity, 2018, 2018, 1-13.	1.6	20
34	An energy-resolved atomic scanning probe. New Journal of Physics, 2018, 20, 115005.	2.9	10
35	Many-body multivaluedness of particle-current variance in closed and open cold-atom systems. Physical Review A, 2018, 98, .	2.5	1
36	Tunable current circulation in triangular quantum-dot metastructures. Europhysics Letters, 2018, 123, 47002.	2.0	13

#	Article	IF	CITATIONS
37	Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. Journal of Applied Physics, 2018, 123, .	2.5	60
38	Polynomial-time solution of prime factorization and NP-complete problems with digital memcomputing machines. Chaos, 2017, 27, 023107.	2.5	67
39	Conducting-insulating transition in adiabatic memristive networks. Physical Review E, 2017, 95, 012305.	2.1	14
40	Ion Transport and Dehydration in Subnanoscale Pores. Biophysical Journal, 2017, 112, 544a.	0.5	0
41	Classification of DNA nucleotides with transverse tunneling currents. Nanotechnology, 2017, 28, 015502.	2.6	8
42	Solitonic Josephson-based meminductive systems. Scientific Reports, 2017, 7, 46736.	3.3	30
43	Absence of chaos in digital memcomputing machines with solutions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3255-3257.	2.1	14
44	Hysteretic Superconducting Heat-Flux Quantum Modulator. Physical Review Applied, 2017, 7, .	3.8	19
45	Exploration and characterization of the memcapacitor and memristor properties of Ni–DNA nanowire devices. NPG Asia Materials, 2017, 9, e430-e430.	7.9	10
46	Absence of periodic orbits in digital memcomputing machines with solutions. Chaos, 2017, 27, 101101.	2.5	10
47	Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores. Nano Letters, 2017, 17, 4719-4724.	9.1	161
48	MemComputing: An efficient topological computing paradigm. , 2017, , .		1
49	Topological Field Theory and Computing with Instantons. Annalen Der Physik, 2017, 529, 1700123.	2.4	23
50	Thermodynamic meaning of local temperature of nonequilibrium open quantum systems. Physical Review B, 2016, 94, .	3.2	15
51	Sequencing proteins with transverse ionic transport in nanochannels. Scientific Reports, 2016, 6, 25232.	3.3	17
52	Surface trap mediated electronic transport in biofunctionalized silicon nanowires. Nanotechnology, 2016, 27, 345503.	2.6	16
53	Matter-wave propagation in optical lattices: geometrical and flat-band effects. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 075301.	1.5	7
54	Memcomputing Implementation of Ant Colony Optimization. Neural Processing Letters, 2016, 44, 265-277.	3.2	11

#	Article	IF	CITATIONS
55	Observation of ionic Coulomb blockade inÂnanopores. Nature Materials, 2016, 15, 850-855.	27.5	175
56	A Memristive Pascaline. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 558-562.	3.0	10
57	Decoding DNA, RNA and peptides with quantum tunnelling. Nature Nanotechnology, 2016, 11, 117-126.	31.5	183
58	Digital Memcomputing Machines. , 2016, , .		0
59	Local temperatures of strongly-correlated quantum dots out of equilibrium. Physical Review B, 2015, 91, .	3.2	29
60	Reconfigurable transmission lines with memcapacitive materials. Applied Physics Letters, 2015, 107, 253101.	3.3	3
61	Just Add Memory. Scientific American, 2015, 312, 56-61.	1.0	10
62	Edge binding of sine-Gordon solitons in spin-orbit-coupled Bose-Einstein condensates. Physical Review A, 2015, 91, .	2.5	8
63	Scale-free networks as an epiphenomenon of memory. Europhysics Letters, 2015, 109, 28006.	2.0	16
64	Tunable quantum temperature oscillations in graphene nanostructures. Physical Review B, 2015, 91, .	3.2	19
65	Memcomputing <i>NP</i> -complete problems in polynomial time using polynomial resources and collective states. Science Advances, 2015, 1, e1500031.	10.3	58
66	The role of measurement time on the universal crossover from \$\$1/f\$\$ 1 / f to non- \$\$1/f\$\$ 1 / f noise behavior. Journal of Computational Electronics, 2015, 14, 203-208.	2.5	2
67	Memcomputing with membrane memcapacitive systems. Nanotechnology, 2015, 26, 225201.	2.6	24
68	Universal Memcomputing Machines. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 2702-2715.	11.3	106
69	Quantum transport in ultracold atoms. Nature Physics, 2015, 11, 998-1004.	16.7	113
70	Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases. Nanotechnology, 2014, 25, 125705.	2.6	26
71	Memcapacitive neural networks. Electronics Letters, 2014, 50, 141-143.	1.0	28
72	Quantum shock waves and population inversion in collisions of ultracold atomic clouds. Physical Review A, 2014, 89, .	2.5	28

#	Article	IF	CITATIONS
73	Memristor-based devices for sensing. , 2014, , .		25
74	Novel implementation of memristive systems for data encryption and obfuscation. Journal of Applied Physics, 2014, 115, .	2.5	11
75	Publisher's Note: Superconducting Memristors [Phys. Rev. Applied 2 , 034011 (2014)]. Physical Review Applied, 2014, 2, .	3.8	1
76	Dynamic computing random access memory: A brain-inspired computing paradigm with memelements. , 2014, , .		0
77	Phase-induced transport in atomic gases: From superfluid to Mott insulator. Physical Review A, 2014, 90, .	2.5	12
78	Density-Functional Theory of Thermoelectric Phenomena. Physical Review Letters, 2014, 112, 196401.	7.8	24
79	Programmable Redox State of the Nickel Ion Chain in DNA. Nano Letters, 2014, 14, 1026-1031.	9.1	17
80	Memcomputing: A computing paradigm to store and process information on the same physical platform. , 2014, , .		7
81	Introduction for solid state membranes for bio-molecules sensing and manipulation. Journal of Computational Electronics, 2014, 13, 779-780.	2.5	2
82	Driving knots on DNA with AC/DC electric fields: topological friction and memory effects. Soft Matter, 2014, 10, 6491-6498.	2.7	33
83	Dynamic computing random access memory. Nanotechnology, 2014, 25, 285201.	2.6	33
84	Landauer, Kubo, and microcanonical approaches to quantum transport and noise: A comparison and implications for cold-atom dynamics. Physical Review A, 2014, 90, .	2.5	34
85	Improving sequencing by tunneling with multiplexing and cross-correlations. Journal of Computational Electronics, 2014, 13, 794-800.	2.5	3
86	Dynamically generated flat-band phases in optical kagome lattices. Physical Review A, 2014, 90, .	2.5	27
87	Superconducting Memristors. Physical Review Applied, 2014, 2, .	3.8	40
88	Nonequilibrium Ionic Response of Biased Mechanically Controllable Break Junction (MCBJ) Electrodes. Journal of Physical Chemistry C, 2014, 118, 3758-3765.	3.1	17
89	Memristive sensors for pH measure in dry conditions. Surface Science, 2014, 624, 76-79.	1.9	28
90	Enhanced noise at high bias in atomic-scale Au break junctions. Scientific Reports, 2014, 4, 4221.	3.3	30

#	Article	IF	CITATIONS
91	On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology, 2013, 24, 255201.	2.6	90
92	Fast DNA sequencing by electrical means inches closer. Nanotechnology, 2013, 24, 342501.	2.6	19
93	Memory Models of Adaptive Behavior. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24, 1437-1448.	11.3	35
94	Quantum-statistics-induced flow patterns in driven ideal Fermi gases. Physical Review A, 2013, 88, .	2.5	7
95	Determining Excitation-Energy Transfer Times and Mechanisms from Stochastic Time-Dependent Density Functional Theory. Journal of Physical Chemistry B, 2013, 117, 14408-14419.	2.6	7
96	Probing Water Structures in Nanopores Using Tunneling Currents. Physical Review Letters, 2013, 111, 216804.	7.8	3
97	Controlling transport of ultracold atoms in one-dimensional optical lattices with artificial gauge fields. Physical Review A, 2013, 87, .	2.5	19
98	The parallel approach. Nature Physics, 2013, 9, 200-202.	16.7	213
99	Molecular neuron based on the Franck–Condon blockade. Nanotechnology, 2013, 24, 384001.	2.6	2
100	Interaction-induced conducting–non-conducting transition of ultra-cold atoms in one-dimensional optical lattices. New Journal of Physics, 2013, 15, 063026.	2.9	21
101	Ionic Coulomb blockade in nanopores. Journal of Physics Condensed Matter, 2013, 25, 065101.	1.8	31
102	Single-base DNA discrimination via transverse ionic transport. Nanotechnology, 2013, 24, 415101.	2.6	12
103	A 2D driven brownian particle with memory. , 2013, , .		0
104	Generalized Floquet Theory: Application to Dynamical Systems with Memory and Bloch's Theorem for Nonlocal Potentials. Physical Review Letters, 2013, 110, 170602.	7.8	27
105	Reading, writing, and squeezing the entangled states of two nanomechanical resonators coupled to a SQUID. Physical Review B, 2013, 87, .	3.2	20
106	Foundations of stochastic time-dependent current-density functional theory for open quantum systems: Potential pitfalls and rigorous results. Physical Review B, 2013, 87, .	3.2	5
107	Complex dynamics and scale invariance of one-dimensional memristive networks. Physical Review E, 2013, 87, 022116.	2.1	24
108	Changing the state of a memristive system with white noise. Physical Review E, 2013, 87, 042103.	2.1	22

#	Article	IF	CITATIONS
109	Kondo Memory in Driven Strongly Correlated Quantum Dots. Physical Review Letters, 2013, 111, 086601.	7.8	68
110	Self-organization and solution of shortest-path optimization problems with memristive networks. Physical Review E, 2013, 88, 013305.	2.1	51
111	Analogue-to-digital and digital-to-analogue conversion with memristive devices. Electronics Letters, 2012, 48, 73.	1.0	20
112	Second and higher harmonics generation with memristive systems. Applied Physics Letters, 2012, 100, .	3.3	18
113	Topological Jamming of Spontaneously Knotted Polyelectrolyte Chains Driven Through a Nanopore. Physical Review Letters, 2012, 109, 118301.	7.8	93
114	Bosonic and fermionic transport phenomena of ultracold atoms in one-dimensional optical lattices. Physical Review A, 2012, 85, .	2.5	34
115	Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches. Physical Review B, 2012, 86, .	3.2	76
116	Dynamical crossover between the infinite-volume and empty-lattice limits of ultra-cold fermions in 1D optical lattices. Europhysics Letters, 2012, 99, 40003.	2.0	13
117	Photoactivation of neurons by laser-generated local heating. AIP Advances, 2012, 2, 032154.	1.3	19
118	Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements. Proceedings of the IEEE, 2012, 100, 2071-2080.	21.3	201
119	Memristive properties of single-molecule magnets. Physical Review B, 2012, 86, .	3.2	22
120	Fast computation with memory circuit elements. , 2012, , .		3
121	Biologically-Inspired Electronics with Memory Circuit Elements. , 2012, , 15-36.		5
122	Stochastic memory: Memory enhancement due to noise. Physical Review E, 2012, 85, 011116.	2.1	58
123	Teaching Memory Circuit Elements via Experiment-Based Learning. IEEE Circuits and Systems Magazine, 2012, 12, 64-74.	2.3	17
124	DNA Characterization by Transverse Electrical Current in a Nanochannel. Methods in Molecular Biology, 2012, 870, 149-163.	0.9	4
125	DNA sequencing via electron tunneling. , 2012, , .		2
126	Lagrange formalism of memory circuit elements: Classical and quantum formulations. Physical Review B, 2012, 85, .	3.2	23

#	Article	IF	CITATIONS
127	Solving mazes with memristors: A massively parallel approach. Physical Review E, 2011, 84, 046703.	2.1	127
128	<i>Colloquium</i> : Heat flow and thermoelectricity in atomic and molecular junctions. Reviews of Modern Physics, 2011, 83, 131-155.	45.6	708
129	DNA spintronics sees the light. Nature Nanotechnology, 2011, 6, 198-199.	31.5	12
130	Memory materials: a unifying description. Materials Today, 2011, 14, 584-591.	14.2	74
131	Stochastic quantum molecular dynamics for finite and extended systems. Chemical Physics, 2011, 391, 27-36.	1.9	13
132	Memory effects in complex materials and nanoscale systems. Advances in Physics, 2011, 60, 145-227.	14.4	677
133	Chaotic memristor. Applied Physics A: Materials Science and Processing, 2011, 102, 885-889.	2.3	50
134	Viscous corrections to the resistance of nanojunctions: A dispersion relation approach. Physical Review B, 2011, 83, .	3.2	12
135	Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 2011, 47, 243.	1.0	114
136	Memory Circuit Elements: From Systems to Applications. Journal of Computational and Theoretical Nanoscience, 2011, 8, 441-448.	0.4	30
137	Ion motion and electrochemistry in nanostructures. MRS Bulletin, 2011, 36, 914-920.	3.5	7
138	Practical Approach to Programmable Analog Circuits With Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 1857-1864.	5.4	503
139	Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 2010, 23, 881-886.	5.9	924
140	Sequencing at the end of the tunnel. Nature Nanotechnology, 2010, 5, 828-829.	31.5	1
141	Thermoelectric phenomena in disordered open quantum systems. Physical Review B, 2010, 81, .	3.2	3
142	Ionic Memcapacitive Effects in Nanopores. Nano Letters, 2010, 10, 2674-2678.	9.1	76
143	Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 2010, 46, 517.	1.0	139
144	Dehydration and ionic conductance quantization in nanopores. Journal of Physics Condensed Matter, 2010, 22, 454126.	1.8	38

#	Article	IF	CITATIONS
145	Experimental demonstration of associative memory with memristive neural networks. Nature Precedings, 2009, , .	0.1	20
146	Thermospin effects in a quantum dot connected to ferromagnetic leads. Physical Review B, 2009, 79, .	3.2	164
147	Frequency doubling and memory effects in the spin Hall effect. Physical Review B, 2009, 79, .	3.2	25
148	Quantized Ionic Conductance in Nanopores. Physical Review Letters, 2009, 103, 128102.	7.8	92
149	Stochastic quantum molecular dynamics. Physical Review B, 2009, 80, .	3.2	22
150	Information compressibility, entropy variation and approach to steady state in open systems. Europhysics Letters, 2009, 85, 40004.	2.0	9
151	Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors. Proceedings of the IEEE, 2009, 97, 1717-1724.	21.3	871
152	Putting Memory Into Circuit Elements: Memristors, Memcapacitors, and Meminductors [Point of View]. Proceedings of the IEEE, 2009, 97, 1371-1372.	21.3	64
153	Comment on "Molecular Transport Junctions: Clearing Mists― Advanced Materials, 2009, 21, 1547-1547.	21.0	5
154	Effect of Noise on DNA Sequencing via Transverse Electronic Transport. Biophysical Journal, 2009, 97, 1990-1996.	0.5	74
155	Memristive model of amoeba learning. Physical Review E, 2009, 80, 021926.	2.1	374
156	Incompleteness of the Landauer formula for electronic transport. Physical Review B, 2009, 79, .	3.2	63
157	Memory Metamaterials. Science, 2009, 325, 1518-1521.	12.6	760
158	Thermoelectric Effects in Nanoscale Junctions. Nano Letters, 2009, 9, 97-101.	9.1	153
159	The potential and challenges of nanopore sequencing. , 2009, , 261-268.		23
160	<i>Colloquium</i> : Physical approaches to DNA sequencing and detection. Reviews of Modern Physics, 2008, 80, 141-165.	45.6	437
161	The potential and challenges of nanopore sequencing. Nature Biotechnology, 2008, 26, 1146-1153.	17.5	2,201
162	Local electron and ionic heating effects on the conductance of nanostructures. Journal of Physics Condensed Matter, 2008, 20, 374102.	1.8	15

#	Article	IF	CITATIONS
163	A voltage probe of the spin Hall effect. Journal of Physics Condensed Matter, 2008, 20, 025204.	1.8	10
164	The decay of excited He from stochastic density-functional theory: a quantum measurement theory interpretation. Journal of Physics Condensed Matter, 2008, 20, 395214.	1.8	4
165	Stochastic time-dependent current-density-functional theory: A functional theory of open quantum systems. Physical Review B, 2008, 78, .	3.2	36
166	Current-voltage characteristics of semiconductor/ferromagnet junctions in the spin-blockade regime. Physical Review B, 2008, 77, .	3.2	19
167	Electronic viscosity in a quantum well: A test for the local-density approximation. Physical Review B, 2007, 76, .	3.2	10
168	Turbulence-Induced Magnetic Flux Asymmetry at Nanoscale Junctions. Physical Review Letters, 2007, 99, 226802.	7.8	8
169	Comment on "Characterization of the tunneling conductance across DNA bases― Physical Review E, 2007, 76, 013901; author reply 013902.	2.1	35
170	Stochastic Time-Dependent Current-Density-Functional Theory. Physical Review Letters, 2007, 98, 226403.	7.8	69
171	SaietÂal.Reply:. Physical Review Letters, 2007, 98, .	7.8	7
172	Microscopic current dynamics in nanoscale junctions. Physical Review B, 2007, 75, .	3.2	65
173	Spin blockade at semiconductor/ferromagnet junctions. Physical Review B, 2007, 75, .	3.2	11
174	Electron Turbulence at Nanoscale Junctions. Nano Letters, 2007, 7, 1789-1792.	9.1	15
175	Influence of the Environment and Probes on Rapid DNA Sequencing via Transverse Electronic Transport. Biophysical Journal, 2007, 93, 2384-2390.	0.5	113
176	Local ionic and electron heating in single-molecule junctions. Nature Nanotechnology, 2007, 2, 698-703.	31.5	171
177	Electrostatic modification of novel materials. Reviews of Modern Physics, 2006, 78, 1185-1212.	45.6	465
178	Fast DNA Sequencing via Transverse Electronic Transport. Nano Letters, 2006, 6, 779-782.	9.1	381
179	Local Electron Heating in Nanoscale Conductors. Nano Letters, 2006, 6, 2935-2938.	9.1	61
180	Measurement of Current-Induced Local Heating in a Single Molecule Junction. Nano Letters, 2006, 6, 1240-1244.	9.1	222

#	Article	IF	CITATIONS
181	Infrared Imaging of the Nanometer-Thick Accumulation Layer in Organic Field-Effect Transistors. Nano Letters, 2006, 6, 224-228.	9.1	62
182	Current-Induced Effects in Nanoscale Conductors. , 2006, , 185-205.		0
183	Hydrodynamic approach to transport and turbulence in nanoscale conductors. Journal of Physics Condensed Matter, 2006, 18, 11059-11065.	1.8	23
184	Dynamical Corrections to the DFT-LDA Electron Conductance in Nanoscale Systems. Physical Review Letters, 2005, 94, 186810.	7.8	160
185	Effect of Electron-Phonon Scattering on Shot Noise in Nanoscale Junctions. Physical Review Letters, 2005, 95, 166802.	7.8	50
186	Local Heating in Nanoscale Conductors. Nano Letters, 2005, 5, 813-813.	9.1	0
187	Inelastic Effects on the Transport Properties of Alkanethiols. Nano Letters, 2005, 5, 621-624.	9.1	93
188	Inelastic Current-Voltage Characteristics of Atomic and Molecular Junctions. Nano Letters, 2005, 5, 813-813.	9.1	4
189	Electronic Signature of DNA Nucleotides via Transverse Transport. Nano Letters, 2005, 5, 421-424.	9.1	316
190	Approach to Steady-State Transport in Nanoscale Conductors. Nano Letters, 2005, 5, 2569-2572.	9.1	101
191	Are Current-Induced Forces Conservative?. Physical Review Letters, 2004, 92, 176803.	7.8	53
192	Transport in nanoscale systems: the microcanonical versus grand-canonical picture. Journal of Physics Condensed Matter, 2004, 16, 8025-8034.	1.8	107
193	Shot noise in parallel wires. Nanotechnology, 2004, 15, S459-S464.	2.6	25
194	Inelastic Currentâ^'Voltage Characteristics of Atomic and Molecular Junctions. Nano Letters, 2004, 4, 1709-1712.	9.1	96
195	Local Heating in Nanoscale Conductors. Nano Letters, 2003, 3, 1691-1694.	9.1	202
196	Effects of geometry and doping on the operation of molecular transistors. Applied Physics Letters, 2003, 82, 1938-1940.	3.3	40
197	Shot noise in nanoscale conductors from first principles. Physical Review B, 2003, 67, .	3.2	37
198	Nonlinear current-induced forces in Si atomic wires. Physical Review B, 2003, 67, .	3.2	25

#	Article	IF	CITATIONS
199	Chaotic transport in low-dimensional superlattices. Physical Review B, 2003, 67, .	3.2	12
200	Variational and nonvariational principles in quantum transport calculations. Physical Review B, 2002, 66, .	3.2	26
201	Targeting specific eigenvectors and eigenvalues of a given Hamiltonian using arbitrary selection criteria. Physical Review B, 2002, 66, .	3.2	23
202	DNA spintronics. Applied Physics Letters, 2002, 81, 925-927.	3.3	101
203	Molecular electronics by the numbers. IEEE Nanotechnology Magazine, 2002, 1, 86-90.	2.0	25
204	Percolation study of defect tolerance in missing-crossbar networks. Solid State Communications, 2002, 124, 167-170.	1.9	2
205	Electronic transport in single molecules. Chemical Physics, 2002, 281, 189-198.	1.9	59
206	Firstâ€Principles Simulations of Molecular Electronics. Annals of the New York Academy of Sciences, 2002, 960, 177-183.	3.8	8
207	Molecules as Components in Electronic Devices: A First-Principles Study. Computational Chemistry - Reviews of Current Trends, 2002, , 1-15.	0.4	1
208	Transport in nanoscale conductors from first principles. Physical Review B, 2001, 65, .	3.2	177
209	Atomic-Scale Dynamics of the Formation and Dissolution of Carbon Clusters in SiO2. Physical Review Letters, 2001, 86, 5946-5949.	7.8	86
210	Molecular electronics by the numbers. Physica B: Condensed Matter, 2001, 296, 72-77.	2.7	37
211	Switching behavior of semiconducting carbon nanotubes under an external electric field. Applied Physics Letters, 2001, 78, 2521-2523.	3.3	57
212	Temperature Effects on the Transport Properties of Molecules. Physical Review Letters, 2001, 86, 288-291.	7.8	182
213	Can we make the SiC–SiO2 interface as good as the Si–SiO2 interface?. Applied Physics Letters, 2001, 79, 2402-2404.	3.3	8
214	Hydrogen passivation and activation of oxygen complexes in silicon. Applied Physics Letters, 2001, 78, 1571-1573.	3.3	23
215	SIMULATIONS OF MOLECULAR ELECTRONICS. , 2001, , .		0
216	Oxygen stability, diffusion, and precipitation in SiC: Implications for thin-film oxidation. Journal of Electronic Materials, 2000, 29, 353-358.	2.2	26

#	Article	IF	CITATIONS
217	Fowler–Nordheim hole tunneling in p-SiC/SiO2 structures. Applied Physics Letters, 2000, 77, 2560-2562.	3.3	85
218	Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide. Applied Physics Letters, 2000, 76, 1713-1715.	3.3	390
219	Effects of anneals in ammonia on the interface trap density near the band edges in 4H–silicon carbide metal-oxide-semiconductor capacitors. Applied Physics Letters, 2000, 77, 3601-3603.	3.3	54
220	Koster-Slater model for the interface-state problem. Physical Review B, 2000, 62, R10622-R10625.	3.2	7
221	Hydrogen-related defects in irradiated SiO/sub 2/. IEEE Transactions on Nuclear Science, 2000, 47, 2289-2296.	2.0	48
222	First-Principles Calculation of Transport Properties of a Molecular Device. Physical Review Letters, 2000, 84, 979-982.	7.8	831
223	Hellmann-Feynman theorem and the definition of forces in quantum time-dependent and transport problems. Physical Review B, 2000, 61, 16207-16212.	3.2	97
224	The benzene molecule as a molecular resonant-tunneling transistor. Applied Physics Letters, 2000, 76, 3448-3450.	3.3	199
225	Atomic-Scale Mechanisms of Oxygen Precipitation and Thin-Film Oxidation of SiC. Physical Review Letters, 1999, 83, 1624-1627.	7.8	98
226	Scanning-tunneling-microscopy images: A fullyab initioapproach. Physical Review B, 1999, 59, R5320-R5323.	3.2	21
227	Quantized conductance of multiwalled carbon nanotubes. Applied Physics Letters, 1999, 75, 3787-3789.	3.3	53
228	Stability of ultrathin semiconductor layers. Applied Physics Letters, 1999, 74, 1722-1724.	3.3	2
229	Ab initio calculations of H/sup +/ energetics in SiO/sub 2/: Implications for transport. IEEE Transactions on Nuclear Science, 1999, 46, 1568-1573.	2.0	47
230	Comment on "Contact resistance of carbon nanotubes―[Appl. Phys. Lett. 74, 2122 (1999)]. Applied Physics Letters, 1999, 75, 4028-4029.	3.3	17
231	A remark on the high-energy limit of the one-dimensional scattering problem with position dependent mass. Solid State Communications, 1998, 106, 249-251.	1.9	2
232	Tight-binding approach to excitons bound to monolayer impurity planes: Strong radiative properties of InAs in GaAs. Physical Review B, 1998, 57, R15072-R15075.	3.2	29
233	Coupled Electron-Hole Dynamics at theSi/SiO2Interface. Physical Review Letters, 1998, 81, 4224-4227.	7.8	50
234	Optical properties of ultrathin GaAs layers embedded inAlxGa1â^'xAs. Physical Review B, 1998, 57, 2426-2430.	3.2	5

#	Article	IF	CITATIONS
235	Near-band-edge resonant states of AlAs monolayers embedded in bulk GaAs: The role ofdsymmetries. Physical Review B, 1998, 57, 3733-3736.	3.2	6
236	General solution scheme for second-order differential equations: application to quantum transport. Computers in Physics, 1998, 12, 248.	0.5	5
237	Electronic structure of n - i - p - i Si superlattices. Journal of Physics Condensed Matter, 1997, 9, L657-L661.	1.8	Ο
238	Magnetoconductance of Aharonov-Bohm rings with half-bound states. Physical Review B, 1997, 55, 1353-1356.	3.2	6
239	Blue luminescence from ultrathin GaAs layers embedded in AlAs. Physical Review B, 1997, 56, R4329-R4332.	3.2	8
240	Theory of carriers bound to In isoelectronic δ-doping layers in GaAs. Physical Review B, 1997, 55, 13148-13154.	3.2	24
241	Semiconductor effective charges and dielectric constants in the tight-binding approach. Physical Review B, 1997, 56, R12698-R12701.	3.2	7
242	Microscopic Theory of Wannier-Mott Excitons Bound to Monolayer Insertions: the InAs in GaAs Case. Physica Status Solidi A, 1997, 164, 129-132.	1.7	2
243	Ultrathin GaAs Layers Embedded in AlAs: The Observation of Intense Short-Wavelength Emission. Physica Status Solidi A, 1997, 164, 165-168.	1.7	1
244	How many bound-states does a one-dimensional superlattice have?. Superlattices and Microstructures, 1996, 20, 149-153.	3.1	3
245	Indented barrier resonant tunneling rectifiers. Journal of Applied Physics, 1996, 80, 4174-4176.	2.5	12
246	Chemical and structural contributions to the valence-band offset at GaP/GaAs heterojunctions. Physical Review B, 1996, 54, 5691-5695.	3.2	12
247	The I-V characteristics of double barrier stair-wells. Superlattices and Microstructures, 1995, 17, 117-121.	3.1	3
248	Current rectification through a single-barrier resonant tunneling quantum structure. Superlattices and Microstructures, 1995, 17, 273.	3.1	7
249	Optical study on ultrathin InAs/InP single quantum wells. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1367-1370.	0.4	17
250	Evidence for a photocurrent Fano resonance in an artificial nanostructure. Physical Review B, 1995, 52, R2265-R2268.	3.2	12
251	On the number of states bound by oneâ€dimensional finite periodic potentials. Journal of Mathematical Physics, 1995, 36, 1753-1764.	1.1	25
252	Memristive model of amoeba's learning. Nature Precedings, 0, , .	0.1	10