
Katja Wassmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/211522/publications.pdf Version: 2024-02-01

KATIA WASSMANN

#	Article	IF	CITATIONS
1	The Mad2 spindle checkpoint protein has two distinct natively folded states. Nature Structural and Molecular Biology, 2004, 11, 338-345.	8.2	263
2	Resolution of Chiasmata in Oocytes Requires Separase-Mediated Proteolysis. Cell, 2006, 126, 135-146.	28.9	218
3	Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nature Cell Biology, 2011, 13, 599-610.	10.3	207
4	Metaphase I Arrest upon Activation of the Mad2-Dependent Spindle Checkpoint in Mouse Oocytes. Current Biology, 2003, 13, 1596-1608.	3.9	199
5	Mitotic checkpoints: from yeast to cancer. Current Opinion in Genetics and Development, 2001, 11, 83-90.	3.3	184
6	The Meiosis I-to-Meiosis II Transition in Mouse Oocytes Requires Separase Activity. Current Biology, 2003, 13, 1797-1802.	3.9	135
7	Mps1 at kinetochores is essential for female mouse meiosis I. Development (Cambridge), 2011, 138, 2261-2271.	2.5	114
8	Changing Mad2 Levels Affects Chromosome Segregation and Spindle Assembly Checkpoint Control in Female Mouse Meiosis I. PLoS ONE, 2007, 2, e1165.	2.5	104
9	OSD1 Promotes Meiotic Progression via APC/C Inhibition and Forms a Regulatory Network with TDM and CYCA1;2/TAM. PLoS Genetics, 2012, 8, e1002865.	3.5	93
10	Mad2 phosphorylation regulates its association with Mad1 and the APC/C. EMBO Journal, 2003, 22, 797-806.	7.8	88
11	Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest. Nature Communications, 2015, 6, 6946.	12.8	73
12	The PP2A Inhibitor I2PP2A Is Essential for Sister Chromatid Segregation in Oocyte Meiosis II. Current Biology, 2013, 23, 485-490.	3.9	69
13	How oocytes try to get it right: spindle checkpoint control in meiosis. Chromosoma, 2016, 125, 321-335.	2.2	59
14	Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis. Frontiers in Cell and Developmental Biology, 2017, 5, 109.	3.7	59
15	Cyclin B3 promotes anaphase I onset in oocyte meiosis. Journal of Cell Biology, 2019, 218, 1265-1281.	5.2	47
16	Mps1 kinase-dependent Sgo2 centromere localisation mediates cohesin protection in mouse oocyte meiosis I. Nature Communications, 2017, 8, 694.	12.8	43
17	Phosphorylation of the spindle checkpoint protein Mad2 regulates its conformational transition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19772-19777.	7.1	38
18	Cyclin A2 Is Required for Sister Chromatid Segregation, But Not Separase Control, in Mouse Oocyte Meiosis. Cell Reports, 2012, 2, 1077-1087.	6.4	37

Katja Wassmann

#	Article	IF	CITATIONS
19	Tension-Induced Error Correction and Not Kinetochore Attachment Status Activates the SAC in an Aurora-B/C-Dependent Manner in Oocytes. Current Biology, 2018, 28, 130-139.e3.	3.9	35
20	Overexpression of the G1-cyclin Gene CLN2Represses the Mating Pathway in Saccharomyces cerevisiaeat the Level of the MEKK Ste11. Journal of Biological Chemistry, 1997, 272, 13180-13188.	3.4	33
21	Sister chromatid segregation in meiosis II: Deprotection through phosphorylation. Cell Cycle, 2013, 12, 1352-1359.	2.6	32
22	New Insights into the Role of BubR1 in Mitosis and Beyond. International Review of Cell and Molecular Biology, 2013, 306, 223-273.	3.2	29
23	Chromosome Spreads with Centromere Staining in Mouse Oocytes. Methods in Molecular Biology, 2013, 957, 203-212.	0.9	29
24	Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope. Methods, 2017, 115, 17-27.	3.8	29
25	Meiotic Divisions: No Place for Gender Equality. Advances in Experimental Medicine and Biology, 2017, 1002, 1-17.	1.6	25
26	Cycling through mammalian meiosis: B-type cyclins in oocytes. Cell Cycle, 2019, 18, 1537-1548.	2.6	16
27	Kinetochore individualization in meiosis I is required for centromeric cohesin removal in meiosis II. EMBO Journal, 2021, 40, e106797.	7.8	16
28	A PP2A-B56—Centered View on Metaphase-to-Anaphase Transition in Mouse Oocyte Meiosis I. Cells, 2020, 9, 390.	4.1	14
29	Detection of Separase Activity Using a Cleavage Sensor in Live Mouse Oocytes. Methods in Molecular Biology, 2018, 1818, 99-112.	0.9	13
30	Aurora B/C-dependent phosphorylation promotes Rec8 cleavage in mammalian oocytes. Current Biology, 2022, 32, 2281-2290.e4.	3.9	10
31	Working in close quarters: biparental meiosis in the oocyte. EMBO Reports, 0, , .	4.5	1
32	Mps1 at kinetochores is essential for female mouse meiosis I. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0