Helena L A Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2114889/publications.pdf

Version: 2024-02-01

63 papers

9,938 citations

30 h-index 58 g-index

68 all docs 68
docs citations

68 times ranked 19233 citing authors

#	Article	IF	CITATIONS
1	Crosstalk between cilia and autophagy: implication for human diseases. Autophagy, 2023, 19, 24-43.	9.1	10
2	Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochemical Research, 2022, 47, 218-233.	3.3	3
3	Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke. Molecular Neurobiology, 2022, 59, 294-325.	4.0	8
4	Carbon Monoxide Modulation of Microglia-Neuron Communication: Anti-Neuroinflammatory and Neurotrophic Role. Molecular Neurobiology, 2022, 59, 872-889.	4.0	8
5	Carbon Monoxide-Neuroglobin Axis Targeting Metabolism Against Inflammation in BV-2 Microglial Cells. Molecular Neurobiology, 2022, 59, 916-931.	4.0	6
6	Pilot study in human healthy volunteers on the mechanisms underlying remote ischemic conditioning (RIC) $\hat{a} \in$ Targeting circulating immune cells and immune-related proteins. Journal of Neuroimmunology, 2022, 367, 577847.	2.3	3
7	Assessment of as Signaling for Pathway. Methods in Molecular Biology, 2021, 2276, 249-257.	0.9	O
8	The mito-QC Reporter for Quantitative Mitophagy Assessment in Primary Retinal Ganglion Cells and Experimental Glaucoma Models. International Journal of Molecular Sciences, 2020, 21, 1882.	4.1	18
9	Response of the cerebral vasculature to systemic carbon monoxide administrationâ€"Regional differences and sexual dimorphism. European Journal of Neuroscience, 2020, 52, 2771-2780.	2.6	2
10	CO-mediated cytoprotection is dependent on cell metabolism modulation. Redox Biology, 2020, 32, 101470.	9.0	23
11	P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study. Molecular Neurobiology, 2019, 56, 3159-3174.	4.0	11
12	Carbon monoxide released by CORM-A1 prevents yeast cell death via autophagy stimulation. FEMS Yeast Research, 2019, 19, .	2.3	4
13	Autonomic nervous system response to remote ischemic conditioning: heart rate variability assessment. BMC Cardiovascular Disorders, 2019, 19, 211.	1.7	12
14	CSRP3 mediates polyphenols-induced cardioprotection in hypertension. Journal of Nutritional Biochemistry, 2019, 66, 29-42.	4.2	12
15	Phenolic Metabolites Modulate Cardiomyocyte Beating in Response to Isoproterenol. Cardiovascular Toxicology, 2019, 19, 156-167.	2.7	7
16	Improvement of neuronal differentiation by carbon monoxide: Role of pentose phosphate pathway. Redox Biology, 2018, 17, 338-347.	9.0	24
17	Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells. PLoS ONE, 2018, 13, e0191207.	2.5	20
18	Pure Polyphenols Applications for Cardiac Health and Disease. Current Pharmaceutical Design, 2018, 24, 2137-2156.	1.9	15

#	Article	IF	CITATIONS
19	Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus. Free Radical Biology and Medicine, 2017, 104, 311-323.	2.9	51
20	Role of Cell Metabolism and Mitochondrial Function During Adult Neurogenesis. Neurochemical Research, 2017, 42, 1787-1794.	3.3	30
21	Mitochondria and carbon monoxide: cytoprotection and control of cell metabolism – a role for Ca ²⁺ ?. Journal of Physiology, 2016, 594, 4131-4138.	2.9	39
22	Paracrine effect of carbon monoxide: astrocytes promote neuroprotection via purinergic signaling. Journal of Cell Science, 2016, 129, 3178-88.	2.0	16
23	Hippocampal neurogenesis response: What can we expect from two different models of hypertension?. Brain Research, 2016, 1646, 199-206.	2.2	14
24	Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria. Journal of Neurochemistry, 2016, 138, 423-435.	3.9	22
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
26	Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death. PLoS ONE, 2016, 11, e0154781.	2.5	26
27	Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR. Nitric Oxide - Biology and Chemistry, 2015, 49, 80-89.	2.7	9
28	Carbon monoxide and mitochondriaââ,¬â€modulation of cell metabolism, redox response and cell death. Frontiers in Physiology, 2015, 6, 33.	2.8	74
29	New method to assess mitophagy flux by flow cytometry. Autophagy, 2015, 11, 833-843.	9.1	123
30	Carbon monoxide and the <scp>CNS</scp> : challenges and achievements. British Journal of Pharmacology, 2015, 172, 1533-1545.	5.4	74
31	Assessment of Mitochondrial Protein Glutathionylation as Signaling for CO Pathway. Methods in Molecular Biology, 2015, 1264, 343-350.	0.9	1
32	Neuroprotective effects of digested polyphenols from wild blackberry species. European Journal of Nutrition, 2013, 52, 225-236.	3.9	68
33	Carbon Monoxide Modulates Apoptosis by Reinforcing Oxidative Metabolism in Astrocytes. Journal of Biological Chemistry, 2012, 287, 10761-10770.	3.4	90
34	Carbon Monoxide Targeting Mitochondria. Biochemistry Research International, 2012, 2012, 1-9.	3.3	61
35	Preconditioning Triggered by Carbon Monoxide (CO) Provides Neuronal Protection Following Perinatal Hypoxia-Ischemia. PLoS ONE, 2012, 7, e42632.	2.5	39
36	Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chemistry, 2012, 131, 1443-1452.	8.2	101

3

#	Article	IF	CITATIONS
37	Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Progress in Neurobiology, 2011, 93, 444-455.	5.7	150
38	Carbon monoxide prevents hepatic mitochondrial membrane permeabilization. BMC Cell Biology, 2011, 12, 10.	3.0	41
39	Improvement of recombinant protein production by an anti-apoptotic protein from hemolymph of Lonomia obliqua. Cytotechnology, 2010, 62, 547-555.	1.6	10
40	Glutathionylation of Adenine Nucleotide Translocase Induced by Carbon Monoxide Prevents Mitochondrial Membrane Permeabilization and Apoptosis. Journal of Biological Chemistry, 2010, 285, 17077-17088.	3.4	119
41	The effect of the cell death suppressor vMIA on the production of a recombinant protein in the adenovirus-293 expression system. Protein Expression and Purification, 2009, 64, 179-184.	1.3	2
42	Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide. Expert Opinion on Therapeutic Patents, 2009, 19, 663-682.	5.0	55
43	Preâ€conditioning induced by carbon monoxide provides neuronal protection against apoptosis. Journal of Neurochemistry, 2008, 107, 375-384.	3.9	79
44	Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production. Journal of Biotechnology, 2007, 128, 875-894.	3.8	45
45	Effect of the morphogenebolAon the permeability of the Escherichia coliouter membrane. FEMS Microbiology Letters, 2006, 260, 106-111.	1.8	33
46	Catalase effect on cell death for the improvement of recombinant protein production in baculovirus-insect cell system. Bioprocess and Biosystems Engineering, 2006, 29, 409-414.	3.4	8
47	Intracellular dynamics in rotavirus-like particles production: Evaluation of multigene and monocistronic infection strategies. Process Biochemistry, 2006, 41, 2188-2199.	3.7	17
48	Rotavirus-like particle production: Simulation of protein production and particle assembly. Computer Aided Chemical Engineering, 2006, , 1673-1678.	0.5	0
49	Triple layered rotavirus VLP production: Kinetics of vector replication, mRNA stability and recombinant protein production. Journal of Biotechnology, 2005, 120, 72-82.	3.8	91
50	Effect of Escherichia coli Morphogene bolA on Biofilms. Applied and Environmental Microbiology, 2004, 70, 5682-5684.	3.1	68
51	Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene, 2003, 22, 3927-3936.	5.9	357
52	Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Research, 2003, 63, 541-6.	0.9	147
53	The adenine nucleotide translocator in apoptosis. Biochimie, 2002, 84, 167-176.	2.6	111
54	Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-XL. Oncogene, 2002, 21, 1963-1977.	5.9	87

#	Article	IF	Citations
55	The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene, 2001, 20, 4305-4316.	5.9	246
56	Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. Oncogene, 2001, 20, 7579-7587.	5.9	188
57	Control of Mitochondrial Membrane Permeabilization by Adenine Nucleotide Translocator Interacting with HIV-1 Viral Protein R and Bcl-2. Journal of Experimental Medicine, 2001, 193, 509-520.	8.5	261
58	Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene, 2000, 19, 329-336.	5.9	322
59	Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene, 2000, 19, 307-314.	5.9	276
60	The HIV-1 Viral Protein R Induces Apoptosis via a Direct Effect on the Mitochondrial Permeability Transition Pore. Journal of Experimental Medicine, 2000, 191, 33-46.	8.5	428
61	Bax and Adenine Nucleotide Translocator Cooperate in the Mitochondrial Control of Apoptosis. , 1998, 281, 2027-2031.		1,061
62	Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437. , 0, .		1
63	Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-XL., 0, .		2