
## Leonardafrancesca Liotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/211394/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B:<br>Environmental, 2010, 100, 403-412.                                                                                                                  | 20.2 | 733       |
| 2  | Co3O4/CeO2 composite oxides for methane emissions abatement: Relationship between Co3O4–CeO2 interaction and catalytic activity. Applied Catalysis B: Environmental, 2006, 66, 217-227.                                                                  | 20.2 | 419       |
| 3  | Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous<br>Materials, 2009, 162, 588-606.                                                                                                                   | 12.4 | 346       |
| 4  | Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catalysis Science and Technology, 2013, 3, 3085.                                                                                             | 4.1  | 318       |
| 5  | Supported gold catalysts for the total oxidation of volatile organic compounds. Applied Catalysis B:<br>Environmental, 2012, 125, 222-246.                                                                                                               | 20.2 | 289       |
| 6  | Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts. Journal of Physical Chemistry B, 2005, 109, 2821-2827.                                                                                                       | 2.6  | 272       |
| 7  | Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface<br>oxygen vacancies and bulk oxygen mobility in the catalytic activity. Applied Catalysis A: General, 2008,<br>347, 81-88.                                   | 4.3  | 246       |
| 8  | Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts.<br>Applied Catalysis B: Environmental, 2000, 24, 265-273.                                                                                            | 20.2 | 171       |
| 9  | Activity of SiO2 supported gold-palladium catalysts in CO oxidation. Applied Catalysis A: General, 2003, 251, 359-368.                                                                                                                                   | 4.3  | 165       |
| 10 | Manganese oxide-based catalysts for toluene oxidation. Applied Catalysis B: Environmental, 2017, 209, 689-700.                                                                                                                                           | 20.2 | 164       |
| 11 | Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity. Catalysis Communications, 2005, 6, 329-336.                                                       | 3.3  | 155       |
| 12 | The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Applied Catalysis B: Environmental, 2020, 260, 118148.                                                                                                             | 20.2 | 151       |
| 13 | Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MO (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. Applied Catalysis B: Environmental, 2014, 156-157, 350-361.                                                        | 20.2 | 141       |
| 14 | Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs:<br>Support effect. Applied Catalysis B: Environmental, 2011, 101, 629-637.                                                                                   | 20.2 | 139       |
| 15 | Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Applied Catalysis B: Environmental, 2007, 70, 314-322. | 20.2 | 138       |
| 16 | Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and<br>Comparison with Other Bi-Metallic Systems. Catalysts, 2013, 3, 563-583.                                                                                   | 3.5  | 137       |
| 17 | Catalytic Removal of Toluene over Co3O4–CeO2 Mixed Oxide Catalysts: Comparison with Pt/Al2O3.<br>Catalysis Letters, 2009, 127, 270-276.                                                                                                                  | 2.6  | 127       |
| 18 | CoOx catalysts supported on alumina and alumina-baria: influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions. Applied Catalysis A: General, 2003, 245, 167-177.                                   | 4.3  | 121       |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Influence of Alkali Metal Ions in the Chemisorption of CO and CO2on Supported Palladium<br>Catalysts: A Fourier Transform Infrared Spectroscopic Study. Journal of Catalysis, 1996, 164, 322-333.                                           | 6.2  | 113       |
| 20 | Pumice-Supported Cu–Pd Catalysts: Influence of Copper on the Activity and Selectivity of Palladium in the Hydrogenation of Phenylacetylene and But-1-ene. Journal of Catalysis, 1999, 182, 456-462.                                             | 6.2  | 103       |
| 21 | Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations. Applied Catalysis B: Environmental, 2004, 48, 133-149.                                                         | 20.2 | 93        |
| 22 | Effects of redox treatments on the structural composition of a ceria–zirconia oxide for application<br>in the three-way catalysis. Applied Catalysis A: General, 2003, 240, 295-307.                                                            | 4.3  | 87        |
| 23 | Liquid phase selective oxidation of benzyl alcohol over Pd–Ag catalysts supported on pumice.<br>Catalysis Today, 2001, 66, 271-276.                                                                                                             | 4.4  | 86        |
| 24 | Characterization of Pumice-Supported Ag–Pd and Cu–Pd Bimetallic Catalysts by X-Ray Photoelectron<br>Spectroscopy and X-Ray Diffraction. Journal of Catalysis, 1999, 182, 449-455.                                                               | 6.2  | 84        |
| 25 | Screening of different solid acid catalysts for glycerol acetylation. Journal of Molecular Catalysis A, 2013, 367, 69-76.                                                                                                                       | 4.8  | 84        |
| 26 | Low-temperature CO oxidation over Ag/SiO2 catalysts: Effect of OH/Ag ratio. Applied Catalysis B:<br>Environmental, 2018, 221, 598-609.                                                                                                          | 20.2 | 83        |
| 27 | Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catalysis Today, 2010, 158, 35-43.                                      | 4.4  | 82        |
| 28 | High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. Journal of Colloid and Interface Science, 2021, 586, 457-468.                                                                                         | 9.4  | 80        |
| 29 | Selective Hydrogenation of Phenylacetylene on Pumice-Supported Palladium Catalysts. Journal of<br>Catalysis, 1995, 154, 69-79.                                                                                                                  | 6.2  | 78        |
| 30 | Multiâ€Layered, Covalently Supported Ionic Liquid Phase (mlcâ€SILP) as Highly Crossâ€Linked Support for<br>Recyclable Palladium Catalysts for the Suzuki Reaction in Aqueous Medium. Advanced Synthesis and<br>Catalysis, 2011, 353, 2119-2130. | 4.3  | 78        |
| 31 | Total oxidation of propane over Co3O4-based catalysts: Elucidating the influence of Zr dopant.<br>Applied Catalysis B: Environmental, 2021, 298, 120606.                                                                                        | 20.2 | 78        |
| 32 | Multilayered Supported Ionic Liquids as Catalysts for Chemical Fixation of Carbon Dioxide: A<br>Highâ€Throughput Study in Supercritical Conditions. ChemSusChem, 2011, 4, 1830-1837.                                                            | 6.8  | 77        |
| 33 | Catalytic Oxidation of Propene over Pd Catalysts Supported on CeO2, TiO2, Al2O3 and M/Al2O3 Oxides<br>(M = Ce, Ti, Fe, Mn). Catalysts, 2015, 5, 671-689.                                                                                        | 3.5  | 71        |
| 34 | Support effect on the catalytic performance of Au/Co3O4–CeO2 catalysts for CO and CH4 oxidation.<br>Catalysis Today, 2008, 139, 174-179.                                                                                                        | 4.4  | 69        |
| 35 | Keggin heteropolyacid H3PW12O40 supported on different oxides for catalytic and catalytic photo-assisted propene hydration. Physical Chemistry Chemical Physics, 2013, 15, 13329.                                                               | 2.8  | 69        |
| 36 | Oxidation of CH4 over Pd supported on TiO2-doped SiO2: Effect of Ti(IV) loading and influence of SO2.<br>Applied Catalysis B: Environmental, 2009, 88, 430-437.                                                                                 | 20.2 | 68        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ag/CeO2 Composites for Catalytic Abatement of CO, Soot and VOCs. Catalysts, 2018, 8, 285.                                                                                                                                                                      | 3.5  | 65        |
| 38 | Co <sub>3</sub> O <sub>4</sub> particles grown over nanocrystalline CeO <sub>2</sub> : influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation.<br>Catalysis Science and Technology, 2015, 5, 1888-1901. | 4.1  | 63        |
| 39 | A study of the behaviour of Pt supported on CeO2–ZrO2/Al2O3–BaO as NO storage–reduction catalyst for the treatment of lean burn engine emissions. Catalysis Today, 2002, 75, 439-449.                                                                          | 4.4  | 62        |
| 40 | Tunable sulfur vacancies and hetero-interfaces of FeS2-based composites for high-efficiency electromagnetic wave absorption. Journal of Colloid and Interface Science, 2021, 591, 148-160.                                                                     | 9.4  | 62        |
| 41 | Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect. Catalysis Today, 2010, 158, 56-62.                                                                                                                    | 4.4  | 59        |
| 42 | Structure and the Metal Support Interaction of the Au/Mn Oxide Catalysts. Chemistry of Materials, 2010, 22, 3952-3960.                                                                                                                                         | 6.7  | 58        |
| 43 | Cyclodextrin–calixarene co-polymers as a new class of nanosponges. Polymer Chemistry, 2014, 5,<br>4499-4510.                                                                                                                                                   | 3.9  | 58        |
| 44 | Electrochemical properties of Ce-doped SrFeO3 perovskites-modified electrodes towards hydrogen peroxide oxidation. Electrochimica Acta, 2016, 190, 939-947.                                                                                                    | 5.2  | 58        |
| 45 | Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates. Journal of Solid State Chemistry, 2006, 179, 3406-3419.                                                                                             | 2.9  | 57        |
| 46 | Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS. Applied Catalysis B: Environmental, 2011, 106, 529-539.                                                                               | 20.2 | 55        |
| 47 | Imidazoliumâ€Functionalized Carbon Nanohorns for the Conversion of Carbon Dioxide: Unprecedented<br>Increase of Catalytic Activity after Recycling. ChemSusChem, 2017, 10, 1202-1209.                                                                          | 6.8  | 55        |
| 48 | Support effect on the structure and CO oxidation activity of Cu-Cr mixed oxides over Al2O3 and SiO2.<br>Materials Chemistry and Physics, 2009, 114, 604-611.                                                                                                   | 4.0  | 53        |
| 49 | La1â^'xSrxCo1â^'yFeyO3â^'δ perovskites: Preparation, characterization and solar photocatalytic activity.<br>Applied Catalysis B: Environmental, 2015, 178, 218-225.                                                                                            | 20.2 | 53        |
| 50 | Direct synthesis of methyl isobutyl ketone in gas-phase reaction over palladium-loaded hydroxyapatite. Journal of Catalysis, 2005, 232, 257-267.                                                                                                               | 6.2  | 52        |
| 51 | Effect of metal loading on activity, selectivity and deactivation behavior of Pd/silica–alumina catalysts in the hydroconversion of n-hexadecane. Catalysis Today, 2014, 223, 87-96.                                                                           | 4.4  | 52        |
| 52 | Effect of Ti(IV) loading on CO oxidation activity of gold on TiO2 doped amorphous silica. Applied<br>Catalysis A: General, 2006, 310, 114-121.                                                                                                                 | 4.3  | 51        |
| 53 | Hydroconversion of n-hexadecane on Pt/silica-alumina catalysts: Effect of metal loading and support<br>acidity on bifunctional and hydrogenolytic activity. Applied Catalysis A: General, 2014, 469, 328-339.                                                  | 4.3  | 50        |
| 54 | Cu on amorphous AlPO4: Preparation, characterization and catalytic activity in NO reduction by CO in presence of oxygen. Catalysis Today, 2015, 241, 151-158.                                                                                                  | 4.4  | 50        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Catalytic CO oxidation over pumice supported Pd–Ag catalysts. Applied Catalysis A: General, 2001, 211,<br>167-174.                                                                                                     | 4.3  | 49        |
| 56 | Supported Polyhedral Oligomeric Silsesquioxaneâ€Based (POSS) Materials as Highly Active<br>Organocatalysts for the Conversion of CO <sub>2</sub> . ChemCatChem, 2019, 11, 560-567.                                     | 3.7  | 49        |
| 57 | B-Site Metal (Pd, Pt, Ag, Cu, Zn, Ni) Promoted La1â^'xSrxCo1â^'yFeyO3–Î^ Perovskite Oxides as Cathodes for<br>IT-SOFCs. Catalysts, 2015, 5, 366-391.                                                                   | 3.5  | 48        |
| 58 | Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catalysis<br>Today, 2008, 139, 180-187.                                                                                            | 4.4  | 47        |
| 59 | Gold catalysts supported on Y-modified ceria for CO-free hydrogen production via PROX. Applied<br>Catalysis B: Environmental, 2016, 188, 154-168.                                                                      | 20.2 | 47        |
| 60 | Controllable and Large-Scale Synthesis of Carbon Nanostructures: A Review on Bamboo-Like<br>Nanotubes. Catalysts, 2017, 7, 256.                                                                                        | 3.5  | 47        |
| 61 | Palladium nanoparticles immobilized on halloysite nanotubes covered by a multilayer network for catalytic applications. New Journal of Chemistry, 2018, 42, 13938-13947.                                               | 2.8  | 46        |
| 62 | Sol-derived AuNi/MgAl2O4 catalysts: Formation, structure and activity in dry reforming of methane.<br>Applied Catalysis A: General, 2013, 468, 250-259.                                                                | 4.3  | 45        |
| 63 | Synthesis and mechanism investigation of wide-bandwidth Ni@MnO2 NS foam microwave absorbent.<br>Journal of Alloys and Compounds, 2019, 792, 945-952.                                                                   | 5.5  | 45        |
| 64 | Structure of the Metal–Support Interface and Oxidation State of Gold Nanoparticles Supported on<br>Ceria. Journal of Physical Chemistry C, 2012, 116, 2960-2966.                                                       | 3.1  | 44        |
| 65 | Structural and morphological investigation of a cobalt catalyst supported on alumina-baria: effects of redox treatments on the activity in the NO reduction by CO. Applied Catalysis B: Environmental, 2004, 52, 1-10. | 20.2 | 43        |
| 66 | Au/CeO2-SBA-15 catalysts for CO oxidation: Effect of ceria loading on physic-chemical properties and catalytic performances. Catalysis Today, 2012, 187, 10-19.                                                        | 4.4  | 43        |
| 67 | Ceria-based electrolytes prepared by solution combustion synthesis: The role of fuel on the materials properties. Applied Catalysis B: Environmental, 2016, 197, 14-22.                                                | 20.2 | 42        |
| 68 | Direct methane oxidation on La1â^'Sr Cr1FeyO3â^' perovskite-type oxides as potential anode for<br>intermediate temperature solid oxide fuel cells. Applied Catalysis B: Environmental, 2016, 180, 424-433.             | 20.2 | 42        |
| 69 | Design of Ag-CeO2/SiO2 catalyst for oxidative dehydrogenation of ethanol: Control of Ag–CeO2<br>interfacial interaction. Catalysis Today, 2019, 333, 2-9.                                                              | 4.4  | 41        |
| 70 | Palladium on pumice: new catalysts for the stereoselective semihydrogenation of alkynes to (Z)-alkenes. Tetrahedron Letters, 2001, 42, 2015-2017.                                                                      | 1.4  | 40        |
| 71 | Fullerene–Ionic‣iquid Conjugates: A New Class of Hybrid Materials with Unprecedented Properties.<br>Chemistry - A European Journal, 2015, 21, 3327-3334.                                                               | 3.3  | 40        |
| 72 | The Effect of Citric Acid Concentration on the Properties of LaMnO3 as a Catalyst for Hydrocarbon<br>Oxidation. Catalysts, 2019, 9, 226.                                                                               | 3.5  | 40        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Palladium local structure of La1â^'xSrxCo1â^'yFeyâ^'0.03Pd0.03O3â~'δ perovskites synthesized using a one pot<br>citrate method. Physical Chemistry Chemical Physics, 2014, 16, 22677-22686.                                                                                                                                                                | 2.8  | 39        |
| 74 | Lanthanoid-containing Ni-based catalysts for dry reforming of methane: A review. International<br>Journal of Hydrogen Energy, 2022, 47, 4489-4535.                                                                                                                                                                                                         | 7.1  | 39        |
| 75 | Total oxidation of volatile organic compounds on Au/FeOx catalysts supported on mesoporous SBA-15 silica. Applied Catalysis A: General, 2011, 400, 54-60.                                                                                                                                                                                                  | 4.3  | 38        |
| 76 | Liquid phase hydrogenation of phenylacetylene on pumice supported palladium catalysts. Catalysis<br>Today, 1995, 24, 15-21.                                                                                                                                                                                                                                | 4.4  | 37        |
| 77 | Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Materials for Renewable and Sustainable Energy, 2013, 2, 1.                                                                                            | 3.6  | 36        |
| 78 | Infiltration, Overpotential and Ageing Effects on Cathodes for Solid Oxide Fuel Cells:<br>La <sub>0.6</sub> Sr <sub>0.4</sub> Co <sub>0.2</sub> Fe <sub>0.8</sub> O <sub>3-δ</sub> versus<br>Ba <sub>0.5</sub> Sr <sub>0.5</sub> Co <sub>0.8</sub> Fe <sub>0.2</sub> O <sub>3-δ</sub> . Journal of the<br>Electrochemical Society, 2017, 164, F3114-F3122. | 2.9  | 36        |
| 79 | Syngas production from dry reforming of methane over ni/perlite catalysts: Effect of zirconia and ceria impregnation. International Journal of Hydrogen Energy, 2018, 43, 17142-17155.                                                                                                                                                                     | 7.1  | 36        |
| 80 | Alumina supported Pt(1%)/Ce0.6Zr0.4O2 monolith: Remarkable stabilization of ceria–zirconia solution<br>towards CeAlO3 formation operated by Pt under redox conditions. Applied Catalysis B: Environmental,<br>2009, 90, 470-477.                                                                                                                           | 20.2 | 35        |
| 81 | Co/SiO2 catalysts for Fischer–Tropsch synthesis; effect of Co loading and support modification by<br>TiO2. Catalysis Today, 2012, 197, 18-23.                                                                                                                                                                                                              | 4.4  | 35        |
| 82 | La <sub>0.6</sub> Sr <sub>0.4</sub> FeO <sub>3â€<i>δ</i></sub> and<br>La <sub>0.6</sub> Sr <sub>0.4</sub> Co <sub>0.2</sub> Fe <sub>0.8</sub> O <sub>3â€<i>δ</i></sub><br>Perovskite Materials for H <sub>2</sub> O <sub>2</sub> and Glucose Electrochemical Sensors.<br>Electroanalysis, 2015, 27, 684-692.                                               | 2.9  | 35        |
| 83 | Pumice-Supported Pd-Pt Bimetallic Catalysts: Synthesis, Structural Characterization, and Liquid-Phase<br>Hydrogenation of 1,3-Cyclooctadiene. Journal of Catalysis, 1995, 151, 125-134.                                                                                                                                                                    | 6.2  | 34        |
| 84 | Oxidative degradation properties of Co-based catalysts in the presence of ozone. Applied Catalysis B:<br>Environmental, 2007, 75, 281-289.                                                                                                                                                                                                                 | 20.2 | 34        |
| 85 | Local Structure of Supported Keggin and Wells–Dawson Heteropolyacids and Its Influence on the<br>Catalytic Activity. Journal of Physical Chemistry C, 2019, 123, 19513-19527.                                                                                                                                                                              | 3.1  | 34        |
| 86 | Strong impact of indium promoter on Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts used in dry reforming of methane. Applied Catalysis A: General, 2021, 621, 118174.                                                                                                                                                                                                | 4.3  | 34        |
| 87 | Influence of barium and cerium oxides on alumina supported Pd catalysts for hydrocarbon combustion. Applied Catalysis A: General, 2002, 229, 217-227.                                                                                                                                                                                                      | 4.3  | 32        |
| 88 | WO3–V2O5 Active Oxides for NOx SCR by NH3: Preparation Methods, Catalysts' Composition, and<br>Deactivation Mechanism—A Review. Catalysts, 2019, 9, 527.                                                                                                                                                                                                   | 3.5  | 32        |
| 89 | Chromia on silica and zirconia oxides as recyclable oxidizing system: structural and surface characterization of the active chromium species for oxidation reaction. Catalysis Today, 2004, 91-92, 231-236.                                                                                                                                                | 4.4  | 31        |
| 90 | Supported Au catalysts for propene total oxidation: Study of support morphology and gold particle size effects. Catalysis Today, 2011, 176, 7-13.                                                                                                                                                                                                          | 4.4  | 30        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Effect of Ti and Al addition via direct synthesis to SBA-15 as support for cobalt based Fischer-Tropsch catalysts. Applied Catalysis A: General, 2012, 443-444, 76-86.                                               | 4.3  | 30        |
| 92  | Efficient semihydrogenation of the Cî—,C triple bond using palladium on pumice as catalyst. Tetrahedron<br>Letters, 1999, 40, 2857-2858.                                                                             | 1.4  | 29        |
| 93  | Metalâ^'Support Interaction and Redox Behavior of Pt(1 wt %)/Ce0.6Zr0.4O2. Journal of Physical Chemistry B, 2006, 110, 8731-8739.                                                                                    | 2.6  | 29        |
| 94  | Combined sulfating and non-sulfating support to prevent water and sulfur poisoning of Pd catalysts for methane combustion. Chemical Communications, 2010, 46, 6317.                                                  | 4.1  | 29        |
| 95  | Au/Co promoted CeO <sub>2</sub> catalysts for formaldehyde total oxidation at ambient temperature: role of oxygen vacancies. Catalysis Science and Technology, 2019, 9, 3203-3213.                                   | 4.1  | 29        |
| 96  | Ni/CeO <sub>2</sub> Nanoparticles Promoted by Yttrium Doping as Catalysts for CO <sub>2</sub><br>Methanation. ACS Applied Nano Materials, 2020, 3, 12355-12368.                                                      | 5.0  | 29        |
| 97  | Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO<br>and Volatile Organic Compounds (VOCs). Catalysts, 2013, 3, 774-793.                                          | 3.5  | 28        |
| 98  | Supported C <sub>60</sub> -IL-PdNPs as extremely active nanocatalysts for C–C cross-coupling reactions. Journal of Materials Chemistry A, 2016, 4, 17193-17206.                                                      | 10.3 | 28        |
| 99  | Combined CO/CH4 oxidation tests over Pd/Co3O4 monolithic catalyst: Effects of high reaction temperature and SO2 exposure on the deactivation process. Applied Catalysis B: Environmental, 2007, 75, 182-188.         | 20.2 | 27        |
| 100 | Alumina supported Au/Y-doped ceria catalysts for pure hydrogen production via PROX. International<br>Journal of Hydrogen Energy, 2019, 44, 233-245.                                                                  | 7.1  | 27        |
| 101 | Localization of Alkali Metal Ions in Sodium-Promoted Palladium Catalysts as Studied by Low Energy<br>Ion Scattering and Transmission Electron Microscopy. Journal of Catalysis, 1996, 164, 334-340.                  | 6.2  | 26        |
| 102 | Thermal stability, structural properties and catalytic activity of Pd catalysts supported on<br>Al2O3–CeO2–BaO mixed oxides prepared by sol–gel method. Journal of Molecular Catalysis A, 2003,<br>204-205, 763-770. | 4.8  | 25        |
| 103 | Honeycomb supported Co3O4/CeO2 catalyst for CO/CH4 emissions abatement: Effect of low Pd–Pt content on the catalytic activity. Catalysis Communications, 2007, 8, 299-304.                                           | 3.3  | 25        |
| 104 | Hydroconversion of paraffinic wax over platinum and palladium catalysts supported on<br>silica–alumina. Catalysis Today, 2016, 275, 141-148.                                                                         | 4.4  | 25        |
| 105 | Effect of sodium on the electronic properties of Pd/silica-alumina catalysts. Applied Catalysis A:<br>General, 1996, 147, 81-94.                                                                                     | 4.3  | 24        |
| 106 | Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 28, 119-132.                                                                                                                                     | 2.4  | 24        |
| 107 | IR and XPS Study of NO and CO Interaction with Palladium Catalysts Supported on Aluminosilicates.<br>Langmuir, 1999, 15, 1176-1181.                                                                                  | 3.5  | 23        |
| 108 | One-pot microwave assisted catalytic transformation of vegetable oil into glycerol-free biodiesel.<br>Fuel, 2013, 113, 707-711.                                                                                      | 6.4  | 23        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Characterization and performance of the bifunctional platinum-loaded calcium-hydroxyapatite in the one-step synthesis of methyl isobutyl ketone. Journal of Molecular Catalysis A, 2013, 377, 42-50.                          | 4.8 | 23        |
| 110 | Enhanced (photo)catalytic activity of Wells-Dawson (H6P2W18O62) in comparison to Keggin<br>(H3PW12O40) heteropolyacids for 2-propanol dehydration in gas-solid regime. Applied Catalysis A:<br>General, 2016, 528, 113-122.   | 4.3 | 23        |
| 111 | Ni/La2O3 catalysts for dry reforming of methane: Effect of La2O3 synthesis conditions on the<br>structural properties and catalytic performances. International Journal of Hydrogen Energy, 2021, 46,<br>7939-7953.           | 7.1 | 23        |
| 112 | TiO2/Ag2O immobilized on cellulose paper: A new floating system for enhanced photocatalytic and antibacterial activities. Environmental Research, 2021, 198, 111257.                                                          | 7.5 | 23        |
| 113 | Structural evolution of Pt/ceria–zirconia TWC catalysts during the oxidation of carbon monoxide.<br>Journal of Solid State Chemistry, 2004, 177, 1268-1275.                                                                   | 2.9 | 22        |
| 114 | Template evaporation method for controlling anatase nanocrystal size in ordered macroporous TiO2.<br>Journal of Colloid and Interface Science, 2005, 290, 201-207.                                                            | 9.4 | 22        |
| 115 | Antifouling and antimicrobial activity of Ag, Cu and Fe nanoparticles supported on silica and titania.<br>Inorganica Chimica Acta, 2022, 529, 120636.                                                                         | 2.4 | 21        |
| 116 | Model Pumices Supported Metal Catalysts. Journal of Catalysis, 1997, 171, 177-183.                                                                                                                                            | 6.2 | 20        |
| 117 | Structural and surface properties of heterogeneous catalysts: Nature of the oxide carrier and supported particle size effects. Catalysis Today, 2017, 285, 114-124.                                                           | 4.4 | 20        |
| 118 | Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives.<br>Catalysts, 2019, 9, 148.                                                                                              | 3.5 | 20        |
| 119 | Structure of natural water-containing glasses from Lipari (Italy) and Eastern Rhodopes (Bulgaria):<br>SAXS, WAXS and IR studies. Journal of Non-Crystalline Solids, 1998, 232-234, 547-553.                                   | 3.1 | 19        |
| 120 | The Effect of Ni Doping on the Performance and Electronic Structure of LSCF Cathodes Used for IT-SOFCs. Journal of Physical Chemistry C, 2018, 122, 1003-1013.                                                                | 3.1 | 19        |
| 121 | Paper-TiO2 composite: An effective photocatalyst for 2-propanol degradation in gas phase. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 350, 142-151.                                                        | 3.9 | 19        |
| 122 | Catalytic Dehydration of Fructose to 5-Hydroxymethylfurfural in Aqueous Medium over Nb2O5-Based<br>Catalysts. Nanomaterials, 2021, 11, 1821.                                                                                  | 4.1 | 19        |
| 123 | Design of Ni-based catalysts supported over binary La-Ce oxides: Influence of La/Ce ratio on the catalytic performances in DRM. Catalysis Today, 2021, 382, 71-81.                                                            | 4.4 | 18        |
| 124 | Pd/Co3O4 catalyst for CH4 emissions abatement: study of SO2 poisoning effect. Topics in Catalysis, 2007, 42-43, 425-428.                                                                                                      | 2.8 | 17        |
| 125 | Biodiesel From Moroccan Waste Frying Oil: The Optimization of Transesterification Parameters Impact<br>of Biodiesel on the Petrodiesel Lubricity and Combustion. International Journal of Green Energy, 2015,<br>12, 865-872. | 3.8 | 17        |
| 126 | Time-resolved X-ray powder diffraction on a three-way catalyst at the GILDA beamline. Journal of<br>Synchrotron Radiation, 2003, 10, 177-182.                                                                                 | 2.4 | 16        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Templating effect of carbon nanoforms on highly crossâ€linked imidazolium network: Catalytic activity of the resulting hybrids with Pd nanoparticles. Applied Organometallic Chemistry, 2019, 33, e4848.                | 3.5 | 16        |
| 128 | Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 235-240.                                                                                                                                        | 2.4 | 15        |
| 129 | Chromium(VI) supported and entrapped on silica and zirconia as recyclable materials for oxidation of alcohols. Tetrahedron, 2003, 59, 4997-5002.                                                                        | 1.9 | 15        |
| 130 | Highly Loaded Multiâ€Walled Carbon Nanotubes Nonâ€Covalently Modified with a Bisâ€Imidazolium Salt and their Use as Catalyst Supports. ChemPlusChem, 2016, 81, 471-476.                                                 | 2.8 | 15        |
| 131 | Temperature-programmed reduction of lightly yttrium-doped Au/CeO2 catalysts. Journal of Thermal<br>Analysis and Calorimetry, 2018, 131, 145-154.                                                                        | 3.6 | 15        |
| 132 | Efficient Conversion of Carbon Dioxide by Imidazoliumâ€Based Crossâ€Linked Nanostructures Containing<br>Polyhedral Oligomeric Silsesquioxane (POSS) Building Blocks. ChemPlusChem, 2019, 84, 1536-1543.                 | 2.8 | 15        |
| 133 | Low Temperature Synthesis of Photocatalytic Mesoporous TiO2 Nanomaterials. Catalysts, 2020, 10, 893.                                                                                                                    | 3.5 | 15        |
| 134 | Paper Functionalized with Nanostructured TiO2/AgBr: Photocatalytic Degradation of 2–Propanol under Solar Light Irradiation and Antibacterial Activity. Nanomaterials, 2020, 10, 470.                                    | 4.1 | 15        |
| 135 | Utilization of Waste Grooved Razor Shell (GRS) as a Catalyst in Biodiesel Production from Refined and Waste Cooking Oils. Catalysts, 2020, 10, 703.                                                                     | 3.5 | 15        |
| 136 | Production of biodiesel at small-scale (10ÂL) for local power generation. International Journal of<br>Hydrogen Energy, 2017, 42, 8914-8921.                                                                             | 7.1 | 14        |
| 137 | Effect of Y Modified Ceria Support in Mono and Bimetallic Pd–Au Catalysts for Complete Benzene<br>Oxidation. Catalysts, 2018, 8, 283.                                                                                   | 3.5 | 14        |
| 138 | SBAâ€15/POSSâ€Imidazolium Hybrid as Catalytic Nanoreactor: the role of the Support in the Stabilization of Palladium Species for Câ^'C Cross Coupling Reactions Advanced Synthesis and Catalysis, 2019, 361, 3758-3767. | 4.3 | 14        |
| 139 | Site-specific halloysite functionalization by polydopamine: A new synthetic route for potential near infrared-activated delivery system. Journal of Colloid and Interface Science, 2022, 606, 1779-1791.                | 9.4 | 14        |
| 140 | A new cell for the study ofin situchemical reactions using X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 2005, 12, 499-505.                                                                          | 2.4 | 13        |
| 141 | Room-Temperature Nitrophenol Reduction over Ag–CeO2 Catalysts: The Role of Catalyst Preparation<br>Method. Catalysts, 2020, 10, 580.                                                                                    | 3.5 | 13        |
| 142 | Hybrid paper–TiO <sub>2</sub> coupled with a Cu <sub>2</sub> O heterojunction: an efficient photocatalyst under sun-light irradiation. RSC Advances, 2016, 6, 86918-86929.                                              | 3.6 | 12        |
| 143 | Oxidative dehydrogenation of ethanol on modified OMS-2 catalysts. Catalysis Today, 2020, 357, 503-510.                                                                                                                  | 4.4 | 12        |
| 144 | Keggin heteropolyacid supported on BN and C3N4: Comparison between catalytic and photocatalytic alcohol dehydration. Materials Science in Semiconductor Processing, 2020, 112, 104987.                                  | 4.0 | 12        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Gold Catalysts on Y-Doped Ceria Supports for Complete Benzene Oxidation. Catalysts, 2016, 6, 99.                                                                                                                                               | 3.5 | 11        |
| 146 | Glycerol Acetylation over Organic-Inorganic Sulfonic or Phosphonic Silica Catalysts.<br>ChemistrySelect, 2017, 2, 4934-4941.                                                                                                                   | 1.5 | 11        |
| 147 | La0.6Sr0.4Co0.2Fe0.79M0.01O3â~î´ (M = Ni, Pd) perovskites synthesized by Citrate-EDTA method: Oxygen vacancies effect on electrochemical properties. Advanced Powder Technology, 2018, 29, 2804-2812.                                          | 4.1 | 11        |
| 148 | Distribution of Relaxation Times and Equivalent Circuits Analysis of Ba0.5Sr0.5Co0.8Fe0.2O3â~'δ.<br>Catalysts, 2019, 9, 441.                                                                                                                   | 3.5 | 11        |
| 149 | Model Pumices Supported Metal Catalysts. Journal of Catalysis, 1997, 171, 169-176.                                                                                                                                                             | 6.2 | 10        |
| 150 | Insights into SO2 Interaction with Pd/Co3O4–CeO2 Catalysts for Methane Oxidation. Topics in<br>Catalysis, 2009, 52, 1989-1994.                                                                                                                 | 2.8 | 9         |
| 151 | Pd (1Âwt%)/LaMn0.4Fe0.6O3 Catalysts Supported Over Silica SBA-15: Effect of Perovskite Loading and<br>Support Morphology on Methane Oxidation Activity and SO2 Tolerance. Topics in Catalysis, 2012, 55,<br>782-791.                           | 2.8 | 9         |
| 152 | Hydrogen production on Ni loaded apatite-like oxide synthesized by dissolution-precipitation of natural phosphate. International Journal of Hydrogen Energy, 2017, 42, 19458-19466.                                                            | 7.1 | 9         |
| 153 | On-Demand Release of Protective Agents Triggered by Environmental Stimuli. Frontiers in Chemistry, 2020, 8, 304.                                                                                                                               | 3.6 | 9         |
| 154 | Au/CeO2 Photocatalyst for the Selective Oxidation of Aromatic Alcohols in Water under UV, Visible and Solar Irradiation. Catalysts, 2021, 11, 1467.                                                                                            | 3.5 | 9         |
| 155 | EXAFS and XRD study of Pd–Ag bimetallic catalysts supported on pumice from organometallic precursors. Journal of Non-Crystalline Solids, 2001, 293-295, 682-687.                                                                               | 3.1 | 8         |
| 156 | New Trends in Gold Catalysts. Catalysts, 2014, 4, 299-304.                                                                                                                                                                                     | 3.5 | 8         |
| 157 | Impact of ceria loading on the preferential CO oxidation over gold catalysts on CeO2/Al2O3 and<br>Y-doped CeO2/Al2O3 supports prepared by mechanical mixing. Catalysis Today, 2020, 357, 547-555.                                              | 4.4 | 8         |
| 158 | Straightforward preparation of highly loaded MWCNT–polyamine hybrids and their application in catalysis. Nanoscale Advances, 2020, 2, 4199-4211.                                                                                               | 4.6 | 8         |
| 159 | CO2 reforming of CH4 over Ni supported on SiO2 modified by TiO2 and ZrO2: Effect of the support synthesis procedure. Applied Catalysis A: General, 2022, 642, 118704.                                                                          | 4.3 | 8         |
| 160 | Small scale biodiesel synthesis from waste frying oil and crude methanol in Morocco. Chinese<br>Journal of Chemical Engineering, 2016, 24, 1178-1185.                                                                                          | 3.5 | 7         |
| 161 | Improved (Photo)catalytic Propene Hydration in a Gas/Solid System by Using Heteropolyacid/Oxide<br>Composites: Electron Paramagnetic Resonance, Acidity, and Role of Water. European Journal of<br>Inorganic Chemistry, 2017, 2017, 1900-1907. | 2.0 | 7         |
| 162 | Crossâ€Linked Polyamine from Imidazoliumâ€Based Materials: A Simple Route to Useful Catalytic Materials.<br>European Journal of Organic Chemistry, 2018, 2018, 1352-1358.                                                                      | 2.4 | 7         |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Sustainable Recycling of Insoluble Rust Waste for the Synthesis of Iron-Containing Perovskite-Type<br>Catalysts. ACS Omega, 2019, 4, 6994-7004.                                                                                    | 3.5 | 7         |
| 164 | Sucrose-Assisted Solution Combustion Synthesis of Doped Strontium Ferrate Perovskite-Type<br>Electrocatalysts: Primary Role of the Secondary Fuel. Catalysts, 2020, 10, 134.                                                       | 3.5 | 7         |
| 165 | Sol-gel entrapped chromium(VI): a new selective, efficient and recyclable oxidizing system.<br>Tetrahedron Letters, 2001, 42, 5199-5201.                                                                                           | 1.4 | 6         |
| 166 | Surface and Bulk Changes of a Pt 1%/Ce0.6Zr0.4O2Catalyst During CO Oxidation in the Absence of O2.<br>Topics in Catalysis, 2004, 30/31, 397-403.                                                                                   | 2.8 | 6         |
| 167 | Structural and morphological properties of Co–La catalysts supported on alumina/lanthana for<br>hydrocarbon oxidation. Journal of Non-Crystalline Solids, 2004, 345-346, 620-623.                                                  | 3.1 | 6         |
| 168 | Alumina and Alumina–Baria Supported Cobalt Catalysts for DeNO x : Influence of the Support and<br>Cobalt Content on the Catalytic Performance. Topics in Catalysis, 2009, 52, 1826-1831.                                           | 2.8 | 6         |
| 169 | New Mussel Inspired Polydopamine-Like Silica-Based Material for Dye Adsorption. Nanomaterials, 2020, 10, 1416.                                                                                                                     | 4.1 | 6         |
| 170 | Preparation, Characterization and Catalytic Activity in 2-Propanol Conversion of Potassium and Antimony Mixed Oxides. Topics in Catalysis, 2020, 63, 1388-1397.                                                                    | 2.8 | 6         |
| 171 | Application of Potassium Ion Deposition in Determining the Impact of Support Reducibility on Catalytic<br>Activity of Au/Ceria-Zirconia Catalysts in CO Oxidation, NO Oxidation, and C3H8 Combustion.<br>Catalysts, 2020, 10, 688. | 3.5 | 6         |
| 172 | First Principles Modeling of Pdâ€doped (La,Sr)(Co,Fe)O <sub>3</sub> Complex Perovskites. Fuel Cells,<br>2016, 16, 267-271.                                                                                                         | 2.4 | 5         |
| 173 | A Study on the Stability of Carbon Nanoforms–Polyimidazolium Network Hybrids in the Conversion of<br>CO2 into Cyclic Carbonates: Increase in Catalytic Activity after Reuse. Nanomaterials, 2021, 11, 2243.                        | 4.1 | 5         |
| 174 | Heteropolyacids supported on boron nitride and carbon nitride for catalytic and catalytic photo-assisted alcohol dehydration. Catalysis Today, 2021, 380, 209-222.                                                                 | 4.4 | 5         |
| 175 | Synthesis of high-surface area CeO2 through silica xerogel template: influence of cerium salt precursor. Studies in Surface Science and Catalysis, 2010, , 417-420.                                                                | 1.5 | 4         |
| 176 | New Frontiers in Gold Catalyzed Reactions. Catalysts, 2012, 2, 299-302.                                                                                                                                                            | 3.5 | 4         |
| 177 | Complete Benzene Oxidation over Mono and Bimetallic Pd—Au Catalysts on Alumina-Supported<br>Y-Doped Ceria. Applied Sciences (Switzerland), 2020, 10, 1088.                                                                         | 2.5 | 4         |
| 178 | Study of Nickel Catalysts Supported on MnOx–CeO2 Mixed Oxides in Dry Reforming of Methane.<br>Kinetics and Catalysis, 2021, 62, 765-777.                                                                                           | 1.0 | 4         |
| 179 | Reducibility Studies of Ceria, Ce0.85Zr0.15O2 (CZ) and Au/CZ Catalysts after Alkali Ion Doping: Impact on Activity in Oxidation of NO and CO. Catalysts, 2022, 12, 524.                                                            | 3.5 | 4         |
| 180 | Antifouling Systems Based on Copper and Silver Nanoparticles Supported on Silica, Titania, and<br>Silica/Titania Mixed Oxides. Nanomaterials, 2022, 12, 2371.                                                                      | 4.1 | 4         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Supported Co3O4-CeO2 monoliths: effect of preparation method and Pd-Pt promotion on the CO/CH4 oxidation activity. Studies in Surface Science and Catalysis, 2006, 162, 657-664.                                                                                                                                                                                       | 1.5 | 3         |
| 182 | Mesoporous SBA-15 silica modified with cerium oxide: Effect of ceria loading on support modification.<br>Studies in Surface Science and Catalysis, 2010, , 401-404.                                                                                                                                                                                                    | 1.5 | 3         |
| 183 | New active meso-porous titania foam as size limiter for metal nanoparticles. Journal of Alloys and Compounds, 2018, 735, 1611-1619.                                                                                                                                                                                                                                    | 5.5 | 3         |
| 184 | Activity of Ag/CeZrO2, Ag+K/CeZrO2, and Ag-Au+K/CeZrO2 Systems for Lean Burn Exhaust Clean-Up.<br>Catalysts, 2021, 11, 1041.                                                                                                                                                                                                                                           | 3.5 | 3         |
| 185 | Green Cleaning Procedures Based on Titania-Doped Cotton Textiles: Effect of Titania Textural<br>Properties. Journal of Nanoscience and Nanotechnology, 2017, 17, 3842-3847.                                                                                                                                                                                            | 0.9 | 2         |
| 186 | Bulk and Surface Characterization Techniques of TiO2 and TiO2-Doped Oxides. , 2019, , 57-86.                                                                                                                                                                                                                                                                           |     | 2         |
| 187 | New hybrid organicâ€inorganic multifunctional catalysts based on polydopamineâ€like chemistry. Asian<br>Journal of Organic Chemistry, 0, , .                                                                                                                                                                                                                           | 2.7 | 2         |
| 188 | Structural characterization of Pd-Ag and Pd-Cu bimetallic catalysts by means of EXAFS, WAXS and XPS.<br>Studies in Surface Science and Catalysis, 2000, , 3207-3212.                                                                                                                                                                                                   | 1.5 | 1         |
| 189 | A Special Section on Nanomaterials for Environmental Catalysis and Energy Production. Journal of Nanoscience and Nanotechnology, 2017, 17, 3629-3631.                                                                                                                                                                                                                  | 0.9 | 1         |
| 190 | Clarifying the Role of the Reducers-to-Oxidizers Ratio in the Solution Combustion Synthesis of<br>Ba0.5Sr0.5Co0.8Fe0.2O3-δOxygen Electrocatalysts. Catalysts, 2020, 10, 1465.                                                                                                                                                                                          | 3.5 | 1         |
| 191 | Investigation of Co3O4 and LaCoO3 Interaction by Performing N2O Decomposition Tests under Co3O4-CoO Transition Temperature. Catalysts, 2021, 11, 325.                                                                                                                                                                                                                  | 3.5 | 1         |
| 192 | First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl<br>Bis(catecholato)silicate. Molecules, 2022, 27, 2521.                                                                                                                                                                                                                              | 3.8 | 1         |
| 193 | Chromium(VI) Supported and Entrapped on Silica and Zirconia as Recyclable Materials for Oxidation of Alcohols ChemInform, 2003, 34, no.                                                                                                                                                                                                                                | 0.0 | 0         |
| 194 | Gold catalysis in Southern Italy. Gold Bulletin, 2009, 42, 66-73.                                                                                                                                                                                                                                                                                                      | 2.7 | 0         |
| 195 | CERIA-BASED CATALYSTS FOR AIR POLLUTION ABATEMENT. Catalytic Science Series, 2013, , 813-879.                                                                                                                                                                                                                                                                          | 0.0 | 0         |
| 196 | Experimental optimization of biodiesel production from Moroccan used frying oil. , 2015, , .                                                                                                                                                                                                                                                                           |     | 0         |
| 197 | Hydrogen production on Ni loaded apatite synthesized by dissolution-precipitation of Moroccan natural phosphate. , 2016, , .                                                                                                                                                                                                                                           |     | 0         |
| 198 | Influence of Thermal Treatments on the Reducibility and Catalytic Properties of Pd Supported Over<br>Ce <sub>0.6</sub> Zr <sub>0.4</sub> O <sub><i>x</i>/sub&gt;/SiO<sub>2</sub> and<br/>Ce<sub>0.73</sub>Tb<sub>0.27</sub>O<sub><i>x</i>/j&gt;</sub>/SiO<sub>2</sub> for Methane Oxidation.<br/>Journal of Nanoscience and Nanotechnology, 2017, 17, 3864-3872.</sub> | 0.9 | 0         |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Acetylation of Glycerol over Mixed Zirconium Phosphate- Sulphate Catalysts. , 2017, , .                                                                                                                                                                                           |     | 0         |
| 200 | In-Situ Three-steps Method for Biodiesel Synthesis from Acidified Waste Cooking Oil. , 2017, , .                                                                                                                                                                                  |     | 0         |
| 201 | Front Cover Picture: SBAâ€15/POSSâ€Imidazolium Hybrid as Catalytic Nanoreactor: the role of the Support<br>in the Stabilization of Palladium Species for Câ^'C Cross Coupling Reactions. (Adv. Synth. Catal. 16/2019).<br>Advanced Synthesis and Catalysis, 2019, 361, 3661-3661. | 4.3 | 0         |
| 202 | Catalytic performance of modified Vermiculite-supported Nickel in Methane dry Reforming with carbon dioxide. , 2019, , .                                                                                                                                                          |     | 0         |
| 203 | Preparation of photocatalysts by chemical methodologies. , 2021, , 13-36.                                                                                                                                                                                                         |     | 0         |
| 204 | Effect of Preparation Method on the Performance for PROX of Gold Catalysts on Alumina Supported<br>Y-Doped Ceria. International Journal of Theoretical and Applied Nanotechnology, 0, , .                                                                                         | 0.0 | 0         |
| 205 | Pure Hydrogen Production via PROX over Gold Catalysts on Alumina Supported Y-Doped Ceria: Effect of Support Preparation. , 0, , .                                                                                                                                                 |     | 0         |