Thomas M Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/211346/publications.pdf

Version: 2024-02-01

65 3,965 30 61 papers citations h-index g-index

65 65 2444
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature, 2016, 529, 59-62.	27.8	714
2	An ultrahot gas-giant exoplanet with a stratosphere. Nature, 2017, 548, 58-61.	27.8	192
3	The TESS Objects of Interest Catalog from the TESS Prime Mission. Astrophysical Journal, Supplement Series, 2021, 254, 39.	7.7	190
4	DETECTION OF H ₂ O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE. Astrophysical Journal Letters, 2016, 822, L4.	8.3	181
5	HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance. Science, 2017, 356, 628-631.	12.6	175
6	A close halo of large transparent grains around extreme red giant stars. Nature, 2012, 484, 220-222.	27.8	144
7	The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint. Astronomical Journal, 2018, 155, 29.	4.7	142
8	THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH <i>HUBBLE SPACE TELESCOPE</i> /SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS. Astrophysical Journal Letters, 2013, 772, L16.	8.3	138
9	The Hubble Space Telescope PanCET Program: Exospheric Mg ii and Fe ii in the Near-ultraviolet Transmission Spectrum of WASP-121b Using Jitter Decorrelation. Astronomical Journal, 2019, 158, 91.	4.7	112
10	Detection of Fe i in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2215-2228.	4.4	112
11	An Optical Transmission Spectrum for the Ultra-hot Jupiter WASP-121b Measured with the Hubble Space Telescope. Astronomical Journal, 2018, 156, 283.	4.7	106
12	VLT FORS2 COMPARATIVE TRANSMISSION SPECTROSCOPY: DETECTION OF Na IN THE ATMOSPHERE OF WASP-39b FROM THE GROUND. Astrophysical Journal, 2016, 832, 191.	4.5	105
13	REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER. Astronomical Journal, 2016, 152, 44.	4.7	102
14	The Transiting Exoplanet Community Early Release Science Program for <i>JWST</i> . Publications of the Astronomical Society of the Pacific, 2018, 130, 114402.	3.1	100
15	A uniform analysis of HDÂ209458b Spitzer/IRAC light curves with Gaussian process models. Monthly Notices of the Royal Astronomical Society, 2015, 451, 680-694.	4.4	95
16	The influence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS. Geochimica Et Cosmochimica Acta, 2008, 72, 5708-5721.	3.9	73
17	VLT/FORS2 comparative transmission spectroscopy II: Confirmation of a cloud deck and Rayleigh scattering in WASP-31b, but no potassium?. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4591-4605.	4.4	71
18	The Very Low Albedo of WASP-12b from Spectral Eclipse Observations with Hubble. Astrophysical Journal Letters, 2017, 847, L2.	8.3	63

#	Article	IF	CITATIONS
19	An emission spectrum for WASP-121b measured across the 0.8–1.1 μm wavelength range using the Hubb Space Telescope. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2222-2234.	ole 4.4	61
20	Non-detection of TiO and VO in the atmosphere of WASP-121b using high-resolution spectroscopy. Astronomy and Astrophysics, 2020, 636, A117.	5.1	59
21	Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1638-1644.	4.4	46
22	Updated Parameters and a New Transmission Spectrum of HD 97658b. Astronomical Journal, 2020, 159, 239.	4.7	45
23	DISCOVERY OF SEVEN COMPANIONS TO INTERMEDIATE-MASS STARS WITH EXTREME MASS RATIOS IN THE SCORPIUS–CENTAURUS ASSOCIATION. Astrophysical Journal Letters, 2015, 806, L9.	8.3	44
24	A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18. Astrophysical Journal Letters, 2019, 883, L16.	8.3	42
25	Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley. Monthly Notices of the Royal Astronomical Society, 0 , , .	4.4	41
26	Overcast on Osiris: 3D radiative-hydrodynamical simulations of a cloudy hot Jupiter using the parametrized, phase-equilibrium cloud formation code EddySed. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1332-1355.	4.4	39
27	A Hubble PanCET Study of HAT-P-11b: A Cloudy Neptune with a Low Atmospheric Metallicity. Astronomical Journal, 2019, 158, 244.	4.7	37
28	A library of self-consistent simulated exoplanet atmospheres. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4680-4704.	4.4	36
29	Into the UV: A Precise Transmission Spectrum of HAT-P-41b Using Hubble's WFC3/UVIS G280 Grism. Astronomical Journal, 2020, 159, 204.	4.7	36
30	An inventory of atomic species in the atmosphere of WASP-121b using UVES high-resolution spectroscopy. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3853-3871.	4.4	35
31	The <i>Hubble</i> PanCET program: an extensive search for metallic ions in the exosphere of GJ 436 b. Astronomy and Astrophysics, 2019, 629, A47.	5.1	34
32	The HST PanCET Program: Hints of Na i and Evidence of a Cloudy Atmosphere for the Inflated Hot Jupiter WASP-52b. Astronomical Journal, 2018, 156, 298.	4.7	30
33	Detection of Na, K, and H2O in the hazy atmosphere of WASP-6b. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5449-5472.	4.4	30
34	WASP-52b. The effect of star-spot correction on atmospheric retrievals. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5361-5375.	4.4	30
35	Abundance measurements of H2O and carbon-bearing species in the atmosphere of WASP-127b confirm its supersolar metallicity. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4042-4064.	4.4	28
36	The carbon-to-oxygen ratio: implications for the spectra of hydrogen-dominated exoplanet atmospheres. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1123-1137.	4.4	26

#	Article	IF	CITATIONS
37	The Hubble Space Telescope PanCET Program: An Optical to Infrared Transmission Spectrum of HAT-P-32Ab. Astronomical Journal, 2020, 160, 51.	4.7	26
38	Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b. Nature Astronomy, 2022, 6, 471-479.	10.1	26
39	Signatures of strong magnetization and a metal-poor atmosphere for a Neptune-sized exoplanet. Nature Astronomy, 2022, 6, 141-153.	10.1	26
40	Gemini/GMOS optical transmission spectroscopy of WASP-121b: signs of variability in an ultra-hot Jupiter?. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4787-4801.	4.4	25
41	Transmission Spectroscopy for the Warm Sub-Neptune HD 3167c: Evidence for Molecular Absorption and a Possible High-metallicity Atmosphere. Astronomical Journal, 2021, 161, 18.	4.7	25
42	Into the UV: The Atmosphere of the Hot Jupiter HAT-P-41b Revealed. Astrophysical Journal Letters, 2020, 902, L19.	8.3	25
43	Revisiting the potassium feature of WASP-31b at high resolution. Monthly Notices of the Royal Astronomical Society, 2019, 482, 606-615.	4.4	24
44	TESS Observations of the WASP-121 b Phase Curve. Astronomical Journal, 2021, 161, 131.	4.7	23
45	The Hubble PanCET Program: Transit and Eclipse Spectroscopy of the Strongly Irradiated Giant Exoplanet WASP-76b. Astronomical Journal, 2021, 162, 108.	4.7	23
46	Ground-based transmission spectroscopy with FORS2: A featureless optical transmission spectrum and detection of H2O for the ultra-hot Jupiter WASP-103b. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5155-5170.	4.4	20
47	Evidence of a Clear Atmosphere for WASP-62b: The Only Known Transiting Gas Giant in the JWST Continuous Viewing Zone. Astrophysical Journal Letters, 2021, 906, L10.	8.3	20
48	The impact of mixing treatments on cloud modelling in 3D simulations of hot Jupiters. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4500-4515.	4.4	19
49	Phase Curves of Hot Neptune LTT 9779bÂSuggest a High-metallicity Atmosphere. Astrophysical Journal Letters, 2020, 903, L7.	8.3	19
50	The Hubble PanCET Program: A Metal-rich Atmosphere for the Inflated Hot Jupiter HAT-P-41b. Astronomical Journal, 2021, 161, 51.	4.7	16
51	Detecting the proposed CH4–CO2 biosignature pair with the <i>James Webb Space Telescope </i> : TRAPPIST-1e and the effect of cloud/haze. Monthly Notices of the Royal Astronomical Society, 2021, 510, 980-991.	4.4	16
52	HD 191939: Three Sub-Neptunes Transiting a Sun-like Star Only 54 pc Away. Astronomical Journal, 2020, 160, 113.	4.7	15
53	Solar-to-supersolar sodium and oxygen absolute abundances for a  hot Saturn' orbiting a metal-rich star. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3037-3058.	4.4	15
54	Spitzer Reveals Evidence of Molecular Absorption in the Atmosphere of the Hot Neptune LTT 9779b. Astrophysical Journal Letters, 2020, 903, L6.	8.3	14

#	Article	IF	CITATIONS
55	Possibilities for an Aerial Biosphere in Temperate Sub Neptune-Sized Exoplanet Atmospheres. Universe, 2021, 7, 172.	2.5	13
56	TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-like Star HD 108236. Astronomical Journal, 2021, 161, 85.	4.7	13
57	Transmission spectroscopy with VLT FORS2: a featureless spectrum for the low-density transiting exoplanet WASP-88b. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2853-2870.	4.4	9
58	The <i>Hubble</i> PanCET program: long-term chromospheric evolution and flaring activity of the M dwarf host GJ 3470. Astronomy and Astrophysics, 2021, 650, A73.	5.1	8
59	HST PanCET program: non-detection of atmospheric escape in the warm Saturn-sized planet WASP-29 b. Astronomy and Astrophysics, 2021, 649, A40.	5.1	7
60	Ground-based Transmission Spectroscopy with VLT FORS2: Evidence for Faculae and Clouds in the Optical Spectrum of the Warm Saturn WASP-110b. Astronomical Journal, 2021, 162, 88.	4.7	6
61	Transit timings variations in the three-planet system: TOI-270. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5464-5485.	4.4	6
62	The Emission Spectrum of the Hot Jupiter WASP-79b from HST/WFC3. Astronomical Journal, 2022, 163, 7.	4.7	4
63	The Hubble PanCET Program: A Featureless Transmission Spectrum for WASP-29b and Evidence of Enhanced Atmospheric Metallicity on WASP-80b. Astronomical Journal, 2022, 164, 30.	4.7	4
64	The Hubble PanCET program: Transit and Eclipse Spectroscopy of the Hot-Jupiter WASP-74b. Astronomical Journal, 2021, 162, 271.	4.7	3
65	The Hubble PanCET Program: Emission Spectrum of Hot Jupiter HAT-P-41b. Astronomical Journal, 2022, 163, 190.	4.7	1