Fabrice Martin-Laurent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2112696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Extraction from Soils: Old Bias for New Microbial Diversity Analysis Methods. Applied and Environmental Microbiology, 2001, 67, 2354-2359.	3.1	604
2	Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Journal of Microbiological Methods, 2004, 59, 327-335.	1.6	560
3	Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. Journal of Microbiological Methods, 2004, 57, 399-407.	1.6	365
4	Role of a Single Aquaporin Isoform in Root Water Uptake. Plant Cell, 2003, 15, 509-522.	6.6	331
5	Mapping fieldâ€scale spatial patterns of size and activity of the denitrifier community. Environmental Microbiology, 2009, 11, 1518-1526.	3.8	259
6	Quantification of the Detrimental Effect of a Single Primer-Template Mismatch by Real-Time PCR Using the 16S rRNA Gene as an Example. Applied and Environmental Microbiology, 2008, 74, 1660-1663.	3.1	237
7	Molecular Analysis of the Nitrate-Reducing Community from Unplanted and Maize-Planted Soils. Applied and Environmental Microbiology, 2002, 68, 6121-6128.	3.1	187
8	Protein Phosphorylation Is Induced in Tobacco Cells by the Elicitor Cryptogein. Plant Physiology, 1994, 104, 1245-1249.	4.8	152
9	Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environmental Pollution, 2012, 162, 345-353.	7.5	138
10	Pathways for advancing pesticide policies. Nature Food, 2020, 1, 535-540.	14.0	135
11	Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land-use types. European Journal of Soil Biology, 2012, 49, 63-72.	3.2	134
12	Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. Journal of Microbiological Methods, 2004, 56, 3-15.	1.6	132
13	Evolution of atrazine-degrading capabilities in the environment. Applied Microbiology and Biotechnology, 2012, 96, 1175-1189.	3.6	126
14	Accelerated Biodegradation of Veterinary Antibiotics in Agricultural Soil following Long-Term Exposure, and Isolation of a Sulfamethazine-degrading <i>Microbacterium</i> sp Journal of Environmental Quality, 2013, 42, 173-178.	2.0	126
15	The impact of agricultural practices on soil biota: A regional study. Soil Biology and Biochemistry, 2013, 67, 271-284.	8.8	116
16	Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers?. Science of the Total Environment, 2019, 684, 314-325.	8.0	111
17	Influence of maize mucilage on the diversity and activity of the denitrifying community. Environmental Microbiology, 2004, 6, 301-312.	3.8	108
18	Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 1277-1377.	12.8	105

#	Article	IF	CITATIONS
19	Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza, 2005, 16, 51-60.	2.8	98
20	Inter-laboratory evaluation of the ISO standard 11063 "Soil quality — Method to directly extract DNA from soil samples― Journal of Microbiological Methods, 2011, 84, 454-460.	1.6	97
21	Isolation and characterisation ofNocardioidessp. SP12, an atrazine-degrading bacterial strain possessing the genetrzNfrom bulk- and maize rhizosphere soil. FEMS Microbiology Letters, 2003, 221, 111-117.	1.8	95
22	Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent common origin of their catabolic functions. FEMS Microbiology Letters, 2007, 273, 78-86.	1.8	95
23	GammaProteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils. Environmental Pollution, 2013, 180, 199-205.	7.5	80
24	Soil microbial community structure and function relationships: A heat stress experiment. Applied Soil Ecology, 2015, 86, 121-130.	4.3	79
25	Abiotic and Biotic Processes Governing the Fate of Phenylurea Herbicides in Soils: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 1947-1998.	12.8	77
26	Molecular microbiology methods for environmental diagnosis. Environmental Chemistry Letters, 2016, 14, 423-441.	16.2	75
27	Towards a better pesticide policy for the European Union. Science of the Total Environment, 2017, 575, 1027-1033.	8.0	73
28	Accelerated mineralisation of atrazine in maize rhizosphere soil. Biology and Fertility of Soils, 2002, 36, 434-441.	4.3	62
29	Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation, 2011, 22, 637-650.	3.0	62
30	Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis-regulated plant gene. Molecular Genetics and Genomics, 1997, 256, 37-44.	2.4	60
31	Standardisation of methods in soil microbiology: progress and challenges. FEMS Microbiology Ecology, 2012, 82, 1-10.	2.7	59
32	Horizontal gene transfer of atrazine-degrading genes (atz) fromAgrobacterium tumefaciens St96-4 pADP1::Tn5 to bacteria of maize-cultivated soil. Pest Management Science, 2005, 61, 870-880.	3.4	57
33	SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils. Journal of Microbiological Methods, 2007, 68, 60-68.	1.6	57
34	Evidence for shifts in the structure and abundance of the microbial community in a long-term PCB-contaminated soil under bioremediation. Journal of Hazardous Materials, 2011, 195, 254-260.	12.4	57
35	Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environmental Science and Pollution Research, 2016, 23, 11224-11239.	5.3	57
36	2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. FEMS Microbiology Ecology, 2006, 58, 529-537.	2.7	56

#	Article	IF	CITATIONS
37	A tiered assessment approach based on standardized methods to estimate the impact of nicosulfuron on the abundance and function of the soil microbial community. Soil Biology and Biochemistry, 2014, 75, 282-291.	8.8	56
38	Evidence of atrazine mineralization in a soil from the Nile Delta: Isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. International Biodeterioration and Biodegradation, 2011, 65, 1249-1255.	3.9	55
39	Effects of nicosulfuron on the abundance and diversity of arbuscular mycorrhizal fungi used as indicators of pesticide soil microbial toxicity. Ecological Indicators, 2014, 39, 44-53.	6.3	55
40	Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus) Tj ETQq0	0 0 rgBT / 1.5	Overlock 10 1
41	Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters. Environmental Pollution, 2007, 145, 680-690.	7.5	54
42	Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Science of the Total Environment, 2017, 577, 84-93.	8.0	54
43	Genetic Characterization of the Nitrate Reducing Community Based on narG Nucleotide Sequence Analysis. Microbial Ecology, 2003, 46, 113-121.	2.8	52
44	Effect of cropping cycles and repeated herbicide applications on the degradation of diclofop-methyl, bentazone, diuron, isoproturon and pendimethalin in soil. Pest Management Science, 2002, 58, 303-312.	3.4	49
45	Estimation of atrazine-degrading genetic potential and activity in three French agricultural soils. FEMS Microbiology Ecology, 2004, 48, 425-435.	2.7	48
46	Identification and characterization of tebuconazole transformation products in soil by combining suspect screening and molecular typology. Environmental Pollution, 2016, 208, 537-545.	7.5	48
47	Combined effect of bioaugmentation and bioturbation on atrazine degradation in soil. Soil Biology and Biochemistry, 2008, 40, 2253-2259.	8.8	46
48	Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil–plant system. Chemosphere, 2015, 128, 332-340.	8.2	46
49	Lab to Field Assessment of the Ecotoxicological Impact of Chlorpyrifos, Isoproturon, or Tebuconazole on the Diversity and Composition of the Soil Bacterial Community. Frontiers in Microbiology, 2018, 9, 1412.	3.5	46
50	Effect of primary mild stresses on resilience and resistance of the nitrate reducer community to a subsequent severe stress. FEMS Microbiology Letters, 2008, 285, 51-57.	1.8	45
51	Combined metabolic activity within an atrazine-mineralizing community enriched from agrochemical factory soil. International Biodeterioration and Biodegradation, 2007, 60, 299-307.	3.9	42
52	Regulation of bacterial and fungal MCPA degradation at the soil–litter interface. Soil Biology and Biochemistry, 2010, 42, 1879-1887.	8.8	42
53	Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana. Environmental Pollution, 2007, 145, 507-515.	7.5	41
54	Interactions of earthworms with Atrazine-degrading bacteria in an agricultural soil. FEMS Microbiology Ecology, 2006, 57, 192-205.	2.7	40

#	Article	IF	CITATIONS
55	Identification of new microbial functional standards for soil quality assessment. Soil, 2020, 6, 17-34.	4.9	39
56	Dissipation and adsorption of isoproturon, tebuconazole, chlorpyrifos and their main transformation products under laboratory and field conditions. Science of the Total Environment, 2016, 569-570, 86-96.	8.0	38
57	Environmental risk assessment of antibiotics in agroecosystems: ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum. Environmental Science and Pollution Research, 2019, 26, 18930-18937.	5.3	38
58	Screening of cDNA Fragments Generated by Differential RNA Display. Analytical Biochemistry, 1995, 228, 182-184.	2.4	37
59	Fitness drift of an atrazineâ€degrading population under atrazine selection pressure. Environmental Microbiology, 2008, 10, 676-684.	3.8	37
60	s-triazine degrading bacterial isolate Arthrobacter sp. AK-YN10, a candidate for bioaugmentation of atrazine contaminated soil. Applied Microbiology and Biotechnology, 2016, 100, 903-913.	3.6	36
61	Environmental Concentrations of Sulfonamides Can Alter Bacterial Structure and Induce Diatom Deformities in Freshwater Biofilm Communities. Frontiers in Microbiology, 2021, 12, 643719.	3.5	35
62	Genetic rearrangement of the atzAB atrazine-degrading gene cassette from pADP1::Tn5 to the chromosome of Variovorax sp. MD1 and MD2. Gene, 2007, 392, 1-6.	2.2	34
63	Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation. Journal of Soils and Sediments, 2011, 11, 290-300.	3.0	33
64	Evidence for cooperative mineralization of diuron by Arthrobacter sp. BS2 and Achromobacter sp. SP1 isolated from a mixed culture enriched from diuron exposed environments. Chemosphere, 2014, 117, 208-215.	8.2	33
65	Isolation and characterisation of an isoproturon-mineralisingMethylopilasp. TES from French agricultural soil. FEMS Microbiology Letters, 2004, 239, 103-110.	1.8	32
66	Impact of the Maize Rhizosphere on the Genetic Structure, the Diversity and the Atrazine-degrading Gene Composition of Cultivable Atrazine-degrading Communities. Plant and Soil, 2006, 282, 99-115.	3.7	32
67	Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere, 2009, 77, 1052-1059.	8.2	32
68	Taxonomic and functional diversity of atrazineâ€degrading bacterial communities enriched from agrochemical factory soil. Journal of Applied Microbiology, 2010, 109, 355-367.	3.1	32
69	Genetic structure and activity of the nitrate-reducers community in the rhizosphere of different cultivars of maize. Plant and Soil, 2006, 287, 177-186.	3.7	31
70	Potential for microbial diuron mineralisation in a small wineâ€growing watershed: from treated plots to lotic receiver hydrosystem. Pest Management Science, 2009, 65, 651-657.	3.4	31
71	Molecular analysis of the catechol-degrading bacterial community in a coal wasteland heavily contaminated with PAHs. Journal of Hazardous Materials, 2010, 177, 593-601.	12.4	31
72	Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils. Frontiers in Microbiology, 2016, 7, 775.	3.5	31

FABRICE MARTIN-LAURENT

#	Article	IF	CITATIONS
73	Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR. Pest Management Science, 2003, 59, 259-268.	3.4	30
74	Microbial ecotoxicology: an emerging discipline facing contemporary environmental threats. Environmental Science and Pollution Research, 2016, 23, 3981-3983.	5.3	30
75	ECOFUN-MICROBIODIV: an FP7 European project for developing and evaluating innovative tools for assessing the impact of pesticides on soil functional microbial diversity—towards new pesticide registration regulation?. Environmental Science and Pollution Research, 2013, 20, 1203-1205.	5.3	29
76	‣OVE TO HATE―pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms. Environmental Science and Pollution Research, 2016, 23, 18947-18951.	5.3	29
77	Enhanced isoproturon mineralisation in a clay silt loam agricultural soil. Agronomy for Sustainable Development, 2005, 25, 271-277.	5.3	29
78	Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. Journal of Hazardous Materials, 2012, 231-232, 88-97.	12.4	28
79	Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance. Science of the Total Environment, 2017, 579, 1111-1119.	8.0	28
80	Assessment of the ecotoxicological impact of natural and synthetic β-triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Science of the Total Environment, 2019, 651, 241-249.	8.0	28
81	Evidence for taxonomic and functional drift of an atrazine-degrading culture in response to high atrazine input. Applied Microbiology and Biotechnology, 2011, 90, 1547-1554.	3.6	27
82	Molecular Responses to Cadmium in Roots of Pisum Sativum L Water, Air, and Soil Pollution, 2005, 168, 171-186.	2.4	26
83	Estimating the biodegradation of pesticide in soils by monitoring pesticide-degrading gene expression. Biodegradation, 2013, 24, 203-213.	3.0	26
84	Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes. Journal of Hazardous Materials, 2016, 304, 379-387.	12.4	26
85	Impact of a new biopesticide produced byPaenibacillus sp. strain B2 on the genetic structure and density of soil bacterial communities. Pest Management Science, 2007, 63, 269-275.	3.4	25
86	Pesticide risk assessment and management in a globally changing world—report from a European interdisciplinary workshop. Environmental Science and Pollution Research, 2013, 20, 8298-8312.	5.3	25
87	Labour sharing promotes coexistence in atrazine degrading bacterial communities. Scientific Reports, 2019, 9, 18363.	3.3	25
88	Assessment of the effects of oxamyl on the bacterial community of an agricultural soil exhibiting enhanced biodegradation. Science of the Total Environment, 2019, 651, 1189-1198.	8.0	25
89	Aeroponic production of Acacia mangium saplings inoculated with AM fungi for reforestation in the tropics. Forest Ecology and Management, 1999, 122, 199-207.	3.2	24
90	<i>atz</i> gene expressions during atrazine degradation in the soil drilosphere. Molecular Ecology, 2010, 19, 749-759.	3.9	24

#	Article	IF	CITATIONS
91	Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies. Environmental Science and Pollution Research, 2014, 21, 4914-4927.	5.3	24
92	Microbial diversity and activity assessment in a 100-year-old lead mine. Journal of Hazardous Materials, 2021, 410, 124618.	12.4	24
93	Degradation of simazine by microorganisms isolated from soils of Spanish olive fields. Pest Management Science, 2005, 61, 917-921.	3.4	23
94	Evidence for 2,4â€Ð mineralisation in Mediterranean soils: impact of moisture content and temperature. Pest Management Science, 2009, 65, 1021-1029.	3.4	23
95	Taxonomic and functional characterization of microbial communities in Technosols constructed for remediation of a contaminated industrial wasteland. Journal of Soils and Sediments, 2012, 12, 1396-1406.	3.0	23
96	Impact of soil matric potential on the fine-scale spatial distribution and activity of specific microbial degrader communities. FEMS Microbiology Ecology, 2012, 81, 673-683.	2.7	23
97	Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides. Environmental Science and Pollution Research, 2016, 23, 4138-4148.	5.3	23
98	The dissipation and microbial ecotoxicity of tebuconazole and its transformation products in soil under standard laboratory and simulated winter conditions. Science of the Total Environment, 2018, 637-638, 892-906.	8.0	23
99	Potential of preventive bioremediation to reduce environmental contamination by pesticides in an agricultural context: A case study with the herbicide 2,4-D. Journal of Hazardous Materials, 2021, 416, 125740.	12.4	23
100	Microalgae community structure analysis based on 18S rDNA amplification from DNA extracted directly from soil as a potential soil bioindicator. Agronomy for Sustainable Development, 2005, 25, 285-291.	5.3	23
101	Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron. Environmental Science and Pollution Research, 2016, 23, 4320-4333.	5.3	22
102	Genetic potential, diversity and activity of an atrazine-degrading community enriched from a herbicide factory effluent. Journal of Applied Microbiology, 2008, 105, 1334-1343.	3.1	21
103	Diuron mineralisation in a Mediterranean vineyard soil: impact of moisture content and temperature. Pest Management Science, 2010, 66, 988-995.	3.4	21
104	Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. Pest Management Science, 2012, 68, 340-347.	3.4	21
105	Long-term dynamics of the atrazine mineralization potential in surface and subsurface soil in an agricultural field as a response to atrazine applications. Chemosphere, 2012, 86, 1028-1034.	8.2	20
106	Mapping field spatial distribution patterns of isoproturon-mineralizing activity over a three-year winter wheat/rape seed/barley rotation. Chemosphere, 2013, 90, 2499-2511.	8.2	20
107	In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: Evidence for the selective loss of a 47kb region on the plasmid ADP1 containing the atzA, B and C genes. Gene, 2011, 490, 18-25.	2.2	18
108	Agricultural effluent treatment in biobed systems using novel substrates from southeastern Mexico: the relationship with physicochemical parameters of biomixtures. Environmental Science and Pollution Research, 2017, 24, 9741-9753.	5.3	18

#	Article	IF	CITATIONS
109	Cloning and analysis ofpsam2, a gene fromPisum sativumL. regulated in symbiotic arbuscular mycorrhiza and pathogenic root–fungus interactions. Physiological and Molecular Plant Pathology, 1998, 52, 297-307.	2.5	17
110	Evidence for adaptation of riverine sediment microbial communities to diuron mineralization: incidence of runoff and soil erosion. Journal of Soils and Sediments, 2010, 10, 698-707.	3.0	17
111	Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes. Applied Microbiology and Biotechnology, 2013, 97, 1661-1668.	3.6	17
112	Ongoing functional evolution of the bacterial atrazine chlorohydrolase AtzA. Biodegradation, 2014, 25, 21-30.	3.0	17
113	Standard methods for the assessment of structural and functional diversity of soil organisms: A review. Integrated Environmental Assessment and Management, 2018, 14, 463-479.	2.9	17
114	Ecological Recovery and Resilience in Environmental Risk Assessments at the European Food Safety Authority. Integrated Environmental Assessment and Management, 2018, 14, 586-591.	2.9	17
115	A new approach to enhance growth and nodulation of Acacia mangium through aeroponic culture. Biology and Fertility of Soils, 1997, 25, 7-12.	4.3	16
116	Estimation of the density of the protocatechuateâ€degrading bacterial community in soil by realâ€ŧime PCR. European Journal of Soil Science, 2008, 59, 665-673.	3.9	16
117	Soil microbial diversity: an ISO standard for soil DNA extraction. Journal of Soils and Sediments, 2010, 10, 1344-1345.	3.0	16
118	Effects of dissolved organic matter (DOM) at environmentally relevant carbon concentrations on atrazine degradation by Chelatobacter heintzii SalB. Applied Microbiology and Biotechnology, 2012, 95, 1333-1341.	3.6	16
119	Low impact of phenanthrene dissipation on the bacterial community in grassland soil. Environmental Science and Pollution Research, 2014, 21, 2977-2987.	5.3	16
120	Evaluation of the ecotoxicological impact of the organochlorine chlordecone on soil microbial community structure, abundance, and function. Environmental Science and Pollution Research, 2016, 23, 4185-4198.	5.3	16
121	Identification of the <i>hcb</i> Gene Operon Involved in Catalyzing Aerobic Hexachlorobenzene Dechlorination in Nocardioides sp. Strain PD653. Applied and Environmental Microbiology, 2017, 83, .	3.1	16
122	Biocontrol, new questions for Ecotoxicology?. Environmental Science and Pollution Research, 2018, 25, 33895-33900.	5.3	16
123	Detection and quantification of chlordecone in contaminated soils from the French West Indies by GC-MS using the 13C10-chlordecone stable isotope as a tracer. Environmental Science and Pollution Research, 2014, 21, 4928-4933.	5.3	15
124	Soil irrigation with toxic cyanobacterial microcystins increases soil nitrification potential. Environmental Chemistry Letters, 2015, 13, 459-463.	16.2	15
125	Fate and impact of wastewater-borne micropollutants in lettuce and the root-associated bacteria. Science of the Total Environment, 2022, 831, 154674.	8.0	15
126	Isoproturon mineralization in an agricultural soil. Biology and Fertility of Soils, 2011, 47, 427-435.	4.3	14

FABRICE MARTIN-LAURENT

#	Article	IF	CITATIONS
127	Draft Genome Sequence of the Sulfonamide Antibiotic-Degrading <i>Microbacterium</i> sp. Strain C448. Genome Announcements, 2014, 2, .	0.8	14
128	Freshwater sediment pesticide biodegradation potential as an ecological indicator of microbial recovery following a decrease in chronic pesticide exposure: A case study with the herbicide diuron. Ecological Indicators, 2013, 29, 18-25.	6.3	13
129	Categorizing chlordecone potential degradation products to explore their environmental fate. Science of the Total Environment, 2017, 574, 781-795.	8.0	12
130	Identification of the novel <i>hcbB</i> operon catalyzing the dechlorination of pentachlorophenol in the Gram-positive bacterium <i>Nocardioides</i> sp. strain PD653. Journal of Pesticide Sciences, 2018, 43, 124-131.	1.4	12
131	Ecotoxicological risk assessment of wastewater irrigation on soil microorganisms: Fate and impact of wastewater-borne micropollutants in lettuce-soil system. Ecotoxicology and Environmental Safety, 2021, 223, 112595.	6.0	12
132	Editorial: Microbial Ecotoxicology. Frontiers in Microbiology, 2020, 11, 1342.	3.5	11
133	Studies on the response of soil microflora to the application of the fungicide fenhexamid. International Journal of Environmental Analytical Chemistry, 2007, 87, 949-956.	3.3	10
134	Applied Microbial Ecology and Bioremediation. , 2015, , 659-753.		10
135	Clustering pesticides according to their molecular properties, fate, and effects by considering additional ecotoxicological parameters in the TyPol method. Environmental Science and Pollution Research, 2018, 25, 4728-4738.	5.3	10
136	Ecotoxicological impact of the antihypertensive valsartan on earthworms, extracellular enzymes and soil bacterial communities. Environmental Pollution, 2021, 275, 116647.	7.5	10
137	Field assessment of aeroponically grown and nodulated Acacia mangium. Australian Journal of Botany, 2000, 48, 109.	0.6	9
138	Impact of maize mucilage on atrazine mineralization andatzC abundance. Pest Management Science, 2005, 61, 838-844.	3.4	9
139	pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment. Pest Management Science, 2007, 63, 459-467.	3.4	9
140	Long-term impact of 19 years' farmyard manure or sewage sludge application on the structure, diversity and density of the protocatechuate-degrading bacterial community. Agriculture, Ecosystems and Environment, 2012, 158, 72-82.	5.3	9
141	Evidence for the importance of litter as a co-substrate for MCPA dissipation in an agricultural soil. Environmental Science and Pollution Research, 2016, 23, 4164-4175.	5.3	9
142	Cellular localization of a plant protein PSAM 1 in arbuscular mycorrhizas of Pisum sativum. Planta, 1998, 207, 153-157.	3.2	8
143	Microbial Communities as Ecological Indicators of Ecosystem Recovery Following Chemical Pollution. , 2017, , 227-250.		8
144	Antibiotrophy: Key Function for Antibiotic-Resistant Bacteria to Colonize Soils—Case of Sulfamethazine-Degrading Microbacterium sp. C448. Frontiers in Microbiology, 2021, 12, 643087.	3.5	8

#	Article	IF	CITATIONS
145	Complete Genome Sequences of Four Atrazine-Degrading Bacterial Strains, <i>Pseudomonas</i> sp. Strain ADPe, <i>Arthrobacter</i> sp. Strain TES, <i>Variovorax</i> sp. Strain 38R, and <i>Chelatobacter</i> sp. Strain SR38. Microbiology Resource Announcements, 2021, 10, .	0.6	8
146	A bacterium-based contact assay for evaluating the quality of solid samples–Results from an international ring-test. Journal of Hazardous Materials, 2018, 352, 139-147.	12.4	6
147	Insights into the Function and Horizontal Transfer of Isoproturon Degradation Genes (<i>pdmAB</i>) Tj ETQq1 1	0,784314 3.1	l rgBT /Overl
148	Assessing the Effects of Î ² -Triketone Herbicides on the Soil Bacterial and hppd Communities: A Lab-to-Field Experiment. Frontiers in Microbiology, 2020, 11, 610298.	3.5	5
149	Bioremediation of Atrazine-Contaminated Soil. ACS Symposium Series, 2003, , 141-154.	0.5	4
150	Evolution of Bacterial Community in Experimental Sand Filters: Physiological and Molecular Fingerprints. Water, Air, and Soil Pollution, 2008, 195, 233-241.	2.4	4
151	Impact of Leptospermone, a Natural β-Triketone Herbicide, on the Fungal Composition and Diversity of Two Arable Soils. Frontiers in Microbiology, 2019, 10, 1024.	3.5	4
152	Isolation and characterisation of a Bam HI element in psam 3 a gene of Pisum sativum L. induced during early stages of arbuscular mycorrhiza development. Journal of Plant Physiology, 2001, 158, 261-266.	3.5	3
153	Assessment of the resilience and resistance of remediated soils using denitrification as model process. Journal of Soils and Sediments, 2014, 14, 178-182.	3.0	3
154	Draft Genome Sequence of <i>Pseudomonas</i> sp. Strain ADP, a Bacterial Model for Studying the Degradation of the Herbicide Atrazine. Genome Announcements, 2016, 4, .	0.8	3
155	Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural β-triketone herbicide. Environmental Science and Pollution Research, 2018, 25, 29848-29859.	5.3	3
156	Evidence for enhanced dissipation of chlorpyrifos in an agricultural soil inoculated with Serratia rubidaea strain ABS 10. Environmental Science and Pollution Research, 2022, 29, 29358-29367.	5.3	3
157	Aquatic and terrestrial ecotoxicology considering the soil:water continuum in the Anthropocene context. Environmental Science and Pollution Research, 2022, 29, 29221-29225.	5.3	3
158	ECOTOX, new questions for terrestrial and aquatic ecotoxicology. Environmental Science and Pollution Research, 2018, 25, 33841-33843.	5.3	2
159	Impact of PhACs on Soil Microorganisms. Handbook of Environmental Chemistry, 2020, , 267-310.	0.4	2
160	Impact of repeated irrigation of lettuce cultures with municipal wastewater on soil bacterial community diversity and composition. Environmental Science and Pollution Research, 2022, 29, 29236-29243.	5.3	2
161	Editorial: Microbial Ecotoxicology Advances to Improve Environmental and Human Health Under Global Change. Frontiers in Microbiology, 2022, 13, 870404.	3.5	2
162	ECOTOX, the INRA's network of ecotoxicologists, a major structure involved for the coordination and structuring of the French research in ecotoxicology. Environmental Science and Pollution Research, 2016, 23, 2969-2973.	5.3	1

#	Article	lF	CITATIONS
163	Microbial, Plant, and Invertebrate Test Methods in Regulatory Soil Ecotoxicology. Handbook of Environmental Chemistry, 2020, , 369-388.	0.4	1
164	Impact of repeated irrigation of lettuce cultures with municipal wastewater on the diversity and composition of root-associated arbuscular mycorrhizal fungi. Biology and Fertility of Soils, 0, , 1.	4.3	0